Prediction of Banana Production Using Epidemiological Parameters of Black Sigatoka: An Application with Random Forest

被引:19
作者
Olivares, Barlin O. [1 ]
Vega, Andres [2 ]
Rueda Calderon, Maria A. [3 ]
Montenegro-Gracia, Edilberto [4 ]
Araya-Alman, Miguel [5 ]
Marys, Edgloris [6 ]
机构
[1] Univ Cordoba, Programa Doctorado Ingn Agr Alimentaria Forestal, Carretera Nacl 4,Km 396, Cordoba 14014, Spain
[2] Univ Nacl Cordoba, Fac Ciencias Agr, Av Haya Torre S-N,X5000HUA, Cordoba, Argentina
[3] Pontificia Univ Catolica Valparaiso, Lab Genet & Genom Aplicada, Escuela Ciencias Mar, Valparaiso 2950, Chile
[4] Univ Panama, Fac Ciencias Agr, CRUBO Bocas Toro, Finca 15, Changuinola 01001, Panama
[5] Univ Catolica Maule, Dept Ciencias Agr, Km 6 Camino Los Niches, Curico 3466706, Chile
[6] Inst Venezolano Invest Cient IVIC, Ctr Microbiol & Biol Celular, Lab Biotecnol & Virol Vegetal, Caracas 1204, Venezuela
关键词
Black Sigatoka; Musa; production; banana disease; random forest; machine learning; MYCOSPHAERELLA-FIJIENSIS; DISEASE; CLASSIFICATION; CHALLENGES; AAA;
D O I
10.3390/su142114123
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate predictions of crop production are critical to developing effective strategies at the farm level. Knowing banana production is due to the need to maximize the investment-profit ratio, and the availability of this information in advance allows decisions to be made about the management of important diseases. The objective of this study was to predict the number of banana bunches from epidemiological parameters of Black Sigatoka (BS), using random forests (RF) for its ability to predict crop production responses to epidemiological variables. Weekly production data (number of banana bunches) and epidemiological parameters of BS from three adjacent banana sites in Panama during 2015-2018 were used. RF was found to be very capable of predicting the number of banana bunches, with variance explained as 70.0% and root mean square error (RMSE) of 1107.93 +/- 22 of the mean banana bunches observed in the test case. The site, week, youngest leaf spotted and youngest leaf with symptoms in plants with 10 weeks of physiological age were found to be the best predictor group. Our results show that RF is an efficient and versatile machine learning method for banana production predictions based on epidemiological parameters of BS due to its high accuracy and precision, ease of use, and usefulness in data analysis.
引用
收藏
页数:18
相关论文
共 57 条
  • [1] Arcila M., 2000, INFLUENCIA CONDICION, P101
  • [2] Barrera V. José, 2016, rev.udcaactual.divulg.cient., V19, P317
  • [3] Barrera V. José Luis, 2009, Agron. colomb., V27, P73
  • [4] Climate change effects on Black Sigatoka disease of banana
    Bebber, Daniel P.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1775)
  • [5] Belalcazar S., 1991, CONTROL ENFERMEDADES, P241
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [8] Random forests: Finding quasars
    Breiman, L
    Last, M
    Rice, J
    [J]. STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 243 - 254
  • [9] Cayon S. G., 2001, Infomusa, V10, P12
  • [10] Cedeno-Zambrano J.R., 2021, Revista Tecnica de la Facultad de Ingenieria de la Universidad del Zulia,, V44, P4, DOI 10.22209/rt.v44n1a01