ON LINEARLY COUPLED SCHRODINGER SYSTEMS

被引:0
作者
Chen, Zhijie [1 ]
Zou, Wenming [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
EQUATIONS; EXISTENCE; SOLITONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following system of nonlinear Schrodinger equations: {-Delta u + u = f(u) + lambda u, x is an element of R-N, -Delta u + u = g(u) + lambda u, x is an element of R-N, Under almost optimal assumptions on f and g, for small lambda > 0, we obtain positive radial solutions and study their asymptotic behaviors as lambda -> 0.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 16 条
[11]   Symmetry and monotonicity of least energy solutions [J].
Byeon, Jaeyoung ;
Jeanjean, Louis ;
Maris, Mihai .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (04) :481-492
[12]  
Cerami G., 2006, Milan J. Math., V74, P47
[13]  
Chen Z, 2011, ADV DIFFERENTIAL EQU, V16, P775
[14]   A remark on least energy solutions in RN [J].
Jeanjean, L ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (08) :2399-2408
[15]   ON A CLASS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
RABINOWITZ, PH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (02) :270-291
[16]  
Struwe M., 1996, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), V34, DOI [10.1007/978-3-662-03212-1, DOI 10.1007/978-3-662-03212-1]