ON LINEARLY COUPLED SCHRODINGER SYSTEMS

被引:0
作者
Chen, Zhijie [1 ]
Zou, Wenming [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
EQUATIONS; EXISTENCE; SOLITONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following system of nonlinear Schrodinger equations: {-Delta u + u = f(u) + lambda u, x is an element of R-N, -Delta u + u = g(u) + lambda u, x is an element of R-N, Under almost optimal assumptions on f and g, for small lambda > 0, we obtain positive radial solutions and study their asymptotic behaviors as lambda -> 0.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 16 条
[1]   NOVEL SOLITON STATES AND BIFURCATION PHENOMENA IN NONLINEAR FIBER COUPLERS [J].
AKHMEDIEV, N ;
ANKIEWICZ, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (16) :2395-2398
[2]   Multi-bump solitons to linearly coupled systems of nonlinear Schrodinger equations [J].
Ambrosetti, A. ;
Colorado, E. ;
Ruiz, D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :85-112
[3]   Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn [J].
Ambrosetti, Antonio ;
Cerami, Giovanna ;
Ruiz, David .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2816-2845
[4]   Remarks on some systems of nonlinear Schrodinger equations [J].
Ambrosetti, Antonio .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2008, 4 (01) :35-46
[5]  
[Anonymous], 1983, Grundlehren der Mathematischen Wissenschaften
[6]  
[Anonymous], 1990, REV MAT IBEROAM, DOI DOI 10.4171/RMI/92
[7]   On the existence of a positive solution of semilinear elliptic equations in unbounded domains [J].
Bahri, A ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :365-413
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]   MINIMUM ACTION SOLUTIONS OF SOME VECTOR FIELD-EQUATIONS [J].
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (01) :97-113
[10]   Standing waves for nonlinear Schrodinger equations with a general nonlinearity [J].
Byeon, Jaeyoung ;
Jeanjean, Louis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 185 (02) :185-200