Decomposable branching processes with a fixed extinction moment

被引:12
作者
Vatutin, V. A. [1 ]
Dyakonova, E. E. [1 ]
机构
[1] Russian Acad Sci, Dept Discrete Math, VA Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
LIMIT-THEOREMS; PARTICLES; BEHAVIOR;
D O I
10.1134/S0081543815060103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior as n -> a of the probability of the event that a decomposable critical branching process Z(m) = (Z (1)(m),..., Z (N)(m)), m = 0, 1, 2,..., with N types of particles dies at moment n is investigated, and conditional limit theorems are proved that describe the distribution of the number of particles in the process Z(center dot) at moment m < n given that the extinction moment of the process is n. These limit theorems can be considered as statements describing the distribution of the number of vertices in the layers of certain classes of simply generated random trees of fixed height.
引用
收藏
页码:103 / 124
页数:22
相关论文
共 19 条
[1]  
FOSTER J, 1976, SANKHYA SER A, V38, P28
[2]   LIMIT LAWS FOR DECOMPOSABLE CRITICAL BRANCHING-PROCESSES [J].
FOSTER, J ;
NEY, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 46 (01) :13-43
[3]   Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation [J].
Janson, Svante .
PROBABILITY SURVEYS, 2012, 9 :103-252
[4]   ON MULTITYPE BRANCHING PROCESSES WITH RHO]-1 [J].
JOFFE, A ;
SPITZER, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 19 (03) :409-&
[5]   LIMIT-THEOREMS FOR THE TOTAL NUMBER OF DESCENDANTS FOR THE GALTON-WATSON BRANCHING-PROCESS [J].
KARPENKO, AV ;
NAGAEV, SV .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1993, 38 (03) :433-455
[6]  
KESTEN H, 1986, ANN I H POINCARE-PR, V22, P425
[7]   ALTITUDE OF NODES IN RANDOM TREES [J].
MEIR, A ;
MOON, JW .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (05) :997-1015
[8]  
MULLIKIN TW, 1963, T AM MATH SOC, V106, P469
[9]  
Ogura Y., 1975, J. Math. Kyoto Univ., V15, P251
[10]  
Pakes AG, 1971, Advances in Applied Probability, V3, P176, DOI DOI 10.2307/1426333