Existence results for a dynamic Sturm-Liouville boundary value problem on time scales

被引:2
作者
Heidarkhani, Shapour [1 ]
Moradi, Shahin [1 ]
Caristi, Giuseppe [2 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Univ Messina, Dept Econ, I-98122 Messina, Italy
关键词
Time scales; Sturm-Liouville boundary value problem; Infinitely many solutions; Variational methods; MULTIPLE POSITIVE SOLUTIONS; EQUATIONS; SYSTEMS;
D O I
10.1007/s11590-020-01646-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we look for local minima for the Euler functional corresponding to a dynamic Sturm-Liouville boundary value problem on time scales which turns out as an optimization problem. In fact, applying variational methods we obtain the existence of infinitely many solutions for our dynamic problem. An example is also given to illustrate the main results.
引用
收藏
页码:2497 / 2514
页数:18
相关论文
共 36 条
  • [11] Bohner Martin., 2016, MULTIVARIABLE DYNAMI
  • [12] Bohner Martin., 2001, DYNAMIC EQUATIONS TI, DOI DOI 10.1007/978-1-4612-0201-1
  • [13] Bohner Martin., 2015, J. Concr. Appl. Math, V13, P183
  • [14] Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    [J]. BOUNDARY VALUE PROBLEMS, 2009,
  • [15] Cetin E, 2011, APPL MATH LETT, V24, P87, DOI [10.1016/j.aml.2010.08.023, DOI 10.1016/J.AML.2010.08.023]
  • [16] Weak Solutions and Energy Estimates for Singular p-Laplacian-Type Equations
    Chu, Jifeng
    Heidarkhani, Shapour
    Salari, Amjad
    Caristi, Giuseppe
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2018, 24 (01) : 51 - 63
  • [17] D'Aguì G, 2015, ELECTRON J QUAL THEO, P1
  • [18] Dubey S, 2017, INT J SCI RES COMPUT, V5, P57
  • [19] Sturm-Liouville operators on time scales
    Eckhardt, Jonathan
    Teschl, Gerald
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (11) : 1875 - 1887
  • [20] Gilles G., 2010, 5 EUR C COMP FLUID D