Automated Machine Learning Segmentation and Measurement of Urinary Stones on CT Scan

被引:18
作者
Babajide, Rilwan
Lembrikova, Katerina
Ziemba, Justin
Ding, James
Li, Yuemeng
Fermin, Antoine Selman
Fan, Yong
Tasian, Gregory E. [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
ASSOCIATION/ENDOUROLOGICAL SOCIETY GUIDELINE; COMPUTERIZED-TOMOGRAPHY; SURGICAL-MANAGEMENT; PREDICTOR; VOLUME;
D O I
10.1016/j.urology.2022.07.029
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVES To evaluate the performance of an engineered machine learning algorithm to identify kidney stones and measure stone characteristics without the need for human input. METHODS We performed a cross-sectional study of 94 children and adults who had kidney stones identified on non-contrast CT. A previously developed deep learning algorithm was trained to segment renal anatomy and kidney stones and to measure stone features. The performance and speed of the algorithm to measure renal anatomy and kidney stone features were compared to the current gold standard of human measurement performed by 3 independent reviewers. RESULTS The algorithm was 100% sensitive and 100% specific in detecting individual kidney stones. The mean stone volume segmented by the algorithm was smaller than that of human reviewers and had moderate overlap (Dice score: 0.66). There was substantial variation between human reviewers in total segmented stone volume (Jaccard score: 0.17) and volume of the single largest stone (Jaccard score: 0.33). Stone segmentations performed by the machine learning algorithm more precisely approximated stone borders than those performed by human reviewers on qualitative assessment. CONCLUSION An engineered machine learning algorithm can identify and characterize stones more accurately and reliably than humans, which has the potential to improve the precision and efficiency of assessing kidney stone burden. (c) 2022 Elsevier Inc.
引用
收藏
页码:41 / 46
页数:6
相关论文
共 27 条
[1]   Radiomic Features on MRI Enable Risk Categorization of Prostate Cancer Patients on Active Surveillance: Preliminary Findings [J].
Algohary, Ahmad ;
Viswanath, Satish ;
Shiradkar, Rakesh ;
Ghose, Soumya ;
Pahwa, Shivani ;
Moses, Daniel ;
Jambor, Ivan ;
Shnier, Ronald ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Purysko, Andrei S. ;
Verma, Sadhna ;
Ponsky, Lee ;
Stricker, Phillip ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) :818-828
[2]  
Assimos D, 2016, J UROLOGY, V196, P1161, DOI 10.1016/j.juro.2016.05.091
[3]   Surgical Management of Stones: American Urological Association/Endourological Society Guideline, PART I [J].
Assimos, Dean ;
Krambeck, Amy ;
Miller, Nicole L. ;
Monga, Manoj ;
Murad, M. Hassan ;
Nelson, Caleb P. ;
Pace, Kenneth T. ;
Pais, Vernon M., Jr. ;
Pearle, Margaret S. ;
Preminger, Glenn M. ;
Razvi, Hassan ;
Shah, Ojas ;
Matlaga, Brian R. .
JOURNAL OF UROLOGY, 2016, 196 (04) :1153-1160
[4]   Automated Computer Software Compared with Manual Measurements for CT-Based Urinary Stone Metrics: An Evaluation Study [J].
Bell, John Roger ;
Posielski, Natasza M. ;
Penniston, Kristina L. ;
Lubner, Meghan G. ;
Nakada, Stephen Y. ;
Pickhardt, Perry J. .
JOURNAL OF ENDOUROLOGY, 2018, 32 (05) :455-461
[5]  
Cicchetti DV., 1994, PSYCHOL ASSESSMENTS, V6, P284, DOI [DOI 10.1037/1040-3590.6.4.284, 10.1037/1040-3590.6.4.284]
[6]   Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study [J].
Deeley, M. A. ;
Chen, A. ;
Datteri, R. ;
Noble, J. H. ;
Cmelak, A. J. ;
Donnelly, E. F. ;
Malcolm, A. W. ;
Moretti, L. ;
Jaboin, J. ;
Niermann, K. ;
Yang, Eddy S. ;
Yu, David S. ;
Yei, F. ;
Koyama, T. ;
Ding, G. X. ;
Dawant, B. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (14) :4557-4577
[7]   CT-Based Determination of Maximum Ureteral Stone Area: A Predictor of Spontaneous Passage [J].
Demehri, Shadpour ;
Steigner, Michael L. ;
Sodickson, Aaron D. ;
Houseman, E. Andres ;
Rybicki, Frank J. ;
Silverman, Stuart G. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2012, 198 (03) :603-608
[8]   Kidney Stone Volume Estimation from Computerized Tomography Images Using a Model Based Method of Correcting for the Point Spread Function [J].
Duan, Xinhui ;
Wang, Jia ;
Qu, Mingliang ;
Leng, Shuai ;
Liu, Yu ;
Krambeck, Amy ;
McCollough, Cynthia .
JOURNAL OF UROLOGY, 2012, 188 (03) :989-995
[9]   Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study [J].
Ginsburg, Shoshana B. ;
Algohary, Ahmad ;
Pahwa, Shivani ;
Gulani, Vikas ;
Ponsky, Lee ;
Aronen, Hannu J. ;
Bostrom, Peter J. ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Taimen, Pekka ;
Villani, Robert ;
Stricker, Phillip ;
Rastinehad, Ardeshir R. ;
Jambor, Ivan ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (01) :184-193
[10]   The REDCap consortium: Building an international community of software platform partners [J].
Harris, Paul A. ;
Taylor, Robert ;
Minor, Brenda L. ;
Elliott, Veida ;
Fernandez, Michelle ;
O'Neal, Lindsay ;
McLeod, Laura ;
Delacqua, Giovanni ;
Delacqua, Francesco ;
Kirby, Jacqueline ;
Duda, Stephany N. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 95