Learning-Based Optimization for Online Approximate Query Processing

被引:0
作者
Bi, Wenyuan [1 ,2 ]
Zhang, Hanbing [1 ,2 ]
Jing, Yinan [1 ,2 ]
He, Zhenying [1 ,2 ]
Zhang, Kai [1 ,2 ]
Wang, X. Sean [1 ,2 ,3 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
[2] Shanghai Key Lab Data Sci, Shanghai, Peoples R China
[3] Shanghai Inst Intelligent Elect & Syst, Shanghai, Peoples R China
来源
DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT I | 2022年
基金
国家重点研发计划;
关键词
Approximate query processing; OLAP; Error prediction;
D O I
10.1007/978-3-031-00123-9_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Approximate query processing (AQP) technique speeds up query execution by reducing the amount of data that needs to be processed, while sacrificing the accuracy of the query result to some extent. AQP is essentially a trade-off between the accuracy of the query result and the query latency. However, the heuristic AQP optimization and error control mechanism used by the existing AQP system fails to meet the accuracy requirements of users. This paper proposes a deep learning-based error prediction model to guide AQP query optimization. By using this model, we can estimate the errors of candidate query plans and select the appropriate plans that can meet the accuracy requirement with high probability. Extensive experiments show that the AQP system proposed in this paper can outperform the state-of-the-art online sampling-based AQP approach.
引用
收藏
页码:96 / 103
页数:8
相关论文
共 10 条
  • [1] [Anonymous], 2013, P 8 ACM EUROPEAN C C
  • [2] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
  • [3] Quickr: Lazily Approximating Complex AdHoc Queries in BigData Clusters
    Kandula, Srikanth
    Shanbhag, Anil
    Vitorovic, Aleksandar
    Olma, Matthaios
    Grandl, Robert
    Chaudhuri, Surajit
    Ding, Bolin
    [J]. SIGMOD'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2016, : 631 - 646
  • [4] Lakshmi S., 1998, VLDB, V98, P24
  • [5] Wander Join: Online Aggregation via Random Walks
    Li, Feifei
    Wu, Bin
    Yi, Ke
    Zhao, Zhuoyue
    [J]. SIGMOD'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2016, : 615 - 629
  • [6] Plan-Structured Deep Neural Network Models for Query Performance Prediction
    Marcus, Ryan
    Papaemmanouil, Olga
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (11): : 1733 - 1746
  • [7] VERDICTDB: Universalizing Approximate Query Processing
    Park, Yongjoo
    Mozafari, Barzan
    Sorenson, Joseph
    Wang, Junhao
    [J]. SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 1461 - 1476
  • [8] An End-to-End Learning-based Cost Estimator
    Sun, Ji
    Li, Guoliang
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 13 (03): : 307 - 319
  • [9] Wang W, 2016, SIGMOD REC, V45, P17, DOI 10.1145/3003665.3003669
  • [10] Parrot: A Progressive Analysis System on Large Text Collections
    Zhang, Yazhong
    Zhang, Hanbing
    He, Zhenying
    Jing, Yinan
    Zhang, Kai
    Wang, X. Sean
    [J]. DATA SCIENCE AND ENGINEERING, 2021, 6 (01) : 1 - 19