Martensite Formation and Recrystallization Behavior in 17Mn0.06C2Si3Al1Ni TRIP/TWIP Steel after Hot and Cold Rolling

被引:2
作者
Ferreira de Dafe, Sara Silva [1 ]
Moreira, Debora Rezende [1 ]
Matoso, Mariana de Souza [1 ]
Gonzalez, Berenice Mendonca [1 ]
Santos, Dagoberto Brandao [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Met & Mat Engn, Escola Engn, BR-31270901 Belo Horizonte, MG, Brazil
来源
RECRYSTALLIZATION AND GRAIN GROWTH V | 2013年 / 753卷
关键词
Martensite; TRIP steel; Annealing; EBSD; TWIP effect; MECHANICAL-PROPERTIES; EPSILON-MARTENSITE; TRANSFORMATION; PHASE; DEFORMATION; AUSTENITE; EVOLUTION; ENERGY;
D O I
10.4028/www.scientific.net/MSF.753.185
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
This work evaluates the evolution of the microstructure and its influence on the mechanical behavior of steel containing 17% Mn, 0.06% C, 2% Si, 3% Al, and 1% Ni after hot rolling at 1070 degrees C, cold rolling with 44% reduction, and annealing at 700 degrees C for different time periods. The resultant athermal, strain-induced martensite and austenite grains were analyzed by optical and scanning electron microscopy (SEM). The volume fractions of the gamma, epsilon, and alpha' phases of martensite were confirmed by X-ray diffraction, dilatometry, and SEM-electron backscatter diffraction (EBSD) techniques. It was found that cold reduction results in the formation of more alpha' martensite. The Vickers microhardness values were higher for the cold-rolled condition and lower for recrystallized samples, as expected. However, this reduction is counterbalanced by the formation of athermal epsilon and alpha' martensite during the cooling process. The sizes of the recrystallized grains change exponentially during their growth and remain within 1-3 mu m. The yield and tensile strength of the hot-rolled steel reach values close to 250 and 800 MPa, respectively, with a total elongation of 40%, which demonstrates the high work-hardening rate of the steel.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 1993, KEY ENG MAT, DOI DOI 10.4028/WWW.SCIENTIFIC.NET/KEM.84-85.461
[2]   Transformation mechanism of α′-martensite in an austenitic Fe-Mn-C-N alloy [J].
Bracke, L. ;
Kestens, L. ;
Penning, J. .
SCRIPTA MATERIALIA, 2007, 57 (05) :385-388
[3]   Structural parameters of the martensite transformation for austenitic steels [J].
Dai, Q ;
Cheng, XN ;
Luo, XM ;
Zhao, YT .
MATERIALS CHARACTERIZATION, 2002, 49 (04) :367-371
[4]   State-of-the-knowledge on TWIP steel [J].
De Cooman, B. C. ;
Kwon, O. ;
Chin, K. -G. .
MATERIALS SCIENCE AND TECHNOLOGY, 2012, 28 (05) :513-527
[5]   Microstructures and mechanical properties of Fe-Mn-(Al, Si) TRIP/TWIP steels [J].
Ding Hua ;
Tang Zheng-you ;
Li Wei ;
Wang Mei ;
Song Dan .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2006, 13 (06) :66-70
[6]   Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel [J].
Dumay, A. ;
Chateau, J. -P. ;
Allain, S. ;
Migot, S. ;
Bouaziz, O. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 483-84 :184-187
[7]  
EICHELMAN GH, 1953, T AM SOC METAL, V45, P77
[8]   Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J].
Frommeyer, G ;
Brüx, U ;
Neumann, P .
ISIJ INTERNATIONAL, 2003, 43 (03) :438-446
[9]   MICROSCOPIC OBSERVATION OF GAMMA-PHASE AND EPSILON-MARTENSITE AND ALPHA'-MARTENSITE IN FE-MN-SI-BASED SHAPE-MEMORY ALLOYS [J].
JANG, WY ;
GU, Q ;
VANHUMBEECK, J ;
DELAEY, L .
MATERIALS CHARACTERIZATION, 1995, 34 (02) :67-72
[10]   Microstructural evolution and strain hardening of Fe-24Mn and Fe-30Mn alloys during tensile deformation [J].
Liang, X. ;
McDermid, J. R. ;
Bouaziz, O. ;
Wang, X. ;
Embury, J. D. ;
Zurob, H. S. .
ACTA MATERIALIA, 2009, 57 (13) :3978-3988