A new class of function spaces connecting Triebel-Lizorkin spaces and Q spaces

被引:142
作者
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
美国国家科学基金会;
关键词
Triebel-Lizorkin space; Q space; Tent space; Calderon reproducing formula; Capacity; Dual space;
D O I
10.1016/j.jfa.2008.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s epsilon R, tau epsilon [0, infinity), p epsilon (1, infinity) and q epsilon (1, infinity]. In this paper, we introduce a new class of function spaces <(F)over dot>(s,tau)(p,q)(R-n) which unify and generalize the Triebel-Lizorkin spaces with both p epsilon (1, infinity) and p = infinity and Q spaces. By establishing the Carleson measure charactetization of Q space, we then determine the relationship between Triebel-Lizorkin spaces and Q spaces, which answers a question posed by Dafni and Xiao in [G. Dafni, J. Xiao, Some new tent spaces and duality theorem for fractional Carleson measures and Q(alpha) (R-n), J. Funct. Anal. 208 (2004) 377-422]. Moreover, via the Hausdorff capacity, we introduce a new class of tent spaces F<(T)over dot>(s,tau)(p,q)(R-+(n+1)) and determine their dual spaces F<(W)over dot>(-s,tau/q)(p',q') (R-n), where s epsilon R, p,q epsilon [1, infinity), max{p,q} > 1, tau epsilon [0, q/(max{p,q})'], and t' denotes the conjugate index of t epsilon (1, infinity); as an application of this, we further introduce certain Hardy-Hausdorff spaces F<(H)over dot>(s,tau)(p,q)(R-n) and prove that the dual space of F<(H)over dot>(s,tau)(p,q) (R-n) is just <(F)over dot>(-s,tau/q)(p',q')(R-n) when p, q epsilon (1, infinity). (C) 2008 Elsevier Inc. All fights reserved.
引用
收藏
页码:2760 / 2809
页数:50
相关论文
共 50 条
[41]   Real interpolations for Besov and Triebel-Lizorkin spaces on spaces of homogeneous type [J].
Yang, DC .
MATHEMATISCHE NACHRICHTEN, 2004, 273 :96-113
[42]   Riesz potentials in Besov and Triebel-Lizorkin spaces over spaces of homogeneous type [J].
Yang, DC .
POTENTIAL ANALYSIS, 2003, 19 (02) :193-210
[43]   Trace and extension operators for Besov spaces and Triebel-Lizorkin spaces with variable exponents [J].
Noi, Takahiro .
REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (02) :341-404
[44]   Multilinear Commutators of Sublinear Operators on Triebel-Lizorkin Spaces [J].
Xie Rulong ;
Shu Lisheng ;
Zhang Qianxiang ;
Ji Youqing .
Communications in Mathematical Research, 2014, 30 (02) :168-178
[45]   Embedding Theorem for In homogeneous Besov and Triebel-Lizorkin Spaces on RD-spaces [J].
Han, Yanchang .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (04) :757-773
[46]   BOUNDEDNESS AND CONTINUITY FOR VARIATION OPERATORS ON THE TRIEBEL-LIZORKIN SPACES [J].
Liu, Feng ;
Wen, Yongming ;
Zhang, Xiao .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) :1539-1555
[47]   Singular integral operators on product Triebel-Lizorkin spaces [J].
CHEN JieCheng WANG Hui Department of Mathematics Zhejiang University Hangzhou China .
Science China(Mathematics), 2010, 53 (02) :336-347
[48]   Applications of Herz-type Triebel-Lizorkin spaces [J].
Xu, JS ;
Yang, DC .
ACTA MATHEMATICA SCIENTIA, 2003, 23 (03) :328-338
[49]   Approximation by Holder Functions in Besov and Triebel-Lizorkin Spaces [J].
Heikkinen, Toni ;
Tuominen, Heli .
CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) :455-482
[50]   Herz-type Triebel-Lizorkin Spaces, I [J].
Jing Shi XU Department of Mathematics Beijing Normal University Beijing P R China and Department of Mathematics Hunan Normal University Changsha P R China .
Acta Mathematica Sinica(English Series), 2005, 21 (03) :643-654