A new class of function spaces connecting Triebel-Lizorkin spaces and Q spaces

被引:142
作者
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
美国国家科学基金会;
关键词
Triebel-Lizorkin space; Q space; Tent space; Calderon reproducing formula; Capacity; Dual space;
D O I
10.1016/j.jfa.2008.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s epsilon R, tau epsilon [0, infinity), p epsilon (1, infinity) and q epsilon (1, infinity]. In this paper, we introduce a new class of function spaces <(F)over dot>(s,tau)(p,q)(R-n) which unify and generalize the Triebel-Lizorkin spaces with both p epsilon (1, infinity) and p = infinity and Q spaces. By establishing the Carleson measure charactetization of Q space, we then determine the relationship between Triebel-Lizorkin spaces and Q spaces, which answers a question posed by Dafni and Xiao in [G. Dafni, J. Xiao, Some new tent spaces and duality theorem for fractional Carleson measures and Q(alpha) (R-n), J. Funct. Anal. 208 (2004) 377-422]. Moreover, via the Hausdorff capacity, we introduce a new class of tent spaces F<(T)over dot>(s,tau)(p,q)(R-+(n+1)) and determine their dual spaces F<(W)over dot>(-s,tau/q)(p',q') (R-n), where s epsilon R, p,q epsilon [1, infinity), max{p,q} > 1, tau epsilon [0, q/(max{p,q})'], and t' denotes the conjugate index of t epsilon (1, infinity); as an application of this, we further introduce certain Hardy-Hausdorff spaces F<(H)over dot>(s,tau)(p,q)(R-n) and prove that the dual space of F<(H)over dot>(s,tau)(p,q) (R-n) is just <(F)over dot>(-s,tau/q)(p',q')(R-n) when p, q epsilon (1, infinity). (C) 2008 Elsevier Inc. All fights reserved.
引用
收藏
页码:2760 / 2809
页数:50
相关论文
共 50 条
[31]   ATOMIC DECOMPOSITION OF WEIGHTED TRIEBEL-LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE [J].
Li, Ji .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 89 (02) :255-275
[32]   Besov and Triebel-Lizorkin spaces on metric spaces: Embeddings and pointwise multipliers [J].
Yuan, Wen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) :434-457
[33]   New Besov-type spaces and Triebel–Lizorkin-type spaces including Q spaces [J].
Dachun Yang ;
Wen Yuan .
Mathematische Zeitschrift, 2010, 265 :451-480
[34]   Compactly supported refinable distributions in Triebel-Lizorkin spaces and besov spaces [J].
Bolin Ma ;
Qiyu Sun .
Journal of Fourier Analysis and Applications, 1999, 5 :87-104
[35]   Complex interpolation of Besov spaces and Triebel-Lizorkin spaces with variable exponents [J].
Noi, Takahiro ;
Sawano, Yoshihiro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) :676-690
[36]   Compactly supported refinable distributions in Triebel-Lizorkin spaces and Besov spaces [J].
Ma, BL ;
Sun, QY .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (01) :87-104
[37]   Tl theorem for Besov and Triebel-Lizorkin spaces [J].
DENG Donggao & HAN Yongsheng Department of Mathematics ;
Department of Mathematics .
Science China Mathematics, 2005, (05) :657-665
[38]   Besov and Triebel-Lizorkin Capacity in Metric Spaces [J].
Karak, Nijjwal ;
Mondal, Debarati .
MATHEMATICA SLOVACA, 2023, 73 (04) :937-948
[39]   TRIEBEL-LIZORKIN TYPE SPACES WITH VARIABLE EXPONENTS [J].
Yang, Dachun ;
Zhuo, Ciqiang ;
Yuan, Wen .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04) :146-202
[40]   Pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type [J].
Alvarado, Ryan ;
Wang, Fan ;
Yang, Dachun ;
Yuan, Wen .
STUDIA MATHEMATICA, 2023, 268 (02) :121-166