A new class of function spaces connecting Triebel-Lizorkin spaces and Q spaces

被引:142
作者
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
美国国家科学基金会;
关键词
Triebel-Lizorkin space; Q space; Tent space; Calderon reproducing formula; Capacity; Dual space;
D O I
10.1016/j.jfa.2008.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s epsilon R, tau epsilon [0, infinity), p epsilon (1, infinity) and q epsilon (1, infinity]. In this paper, we introduce a new class of function spaces <(F)over dot>(s,tau)(p,q)(R-n) which unify and generalize the Triebel-Lizorkin spaces with both p epsilon (1, infinity) and p = infinity and Q spaces. By establishing the Carleson measure charactetization of Q space, we then determine the relationship between Triebel-Lizorkin spaces and Q spaces, which answers a question posed by Dafni and Xiao in [G. Dafni, J. Xiao, Some new tent spaces and duality theorem for fractional Carleson measures and Q(alpha) (R-n), J. Funct. Anal. 208 (2004) 377-422]. Moreover, via the Hausdorff capacity, we introduce a new class of tent spaces F<(T)over dot>(s,tau)(p,q)(R-+(n+1)) and determine their dual spaces F<(W)over dot>(-s,tau/q)(p',q') (R-n), where s epsilon R, p,q epsilon [1, infinity), max{p,q} > 1, tau epsilon [0, q/(max{p,q})'], and t' denotes the conjugate index of t epsilon (1, infinity); as an application of this, we further introduce certain Hardy-Hausdorff spaces F<(H)over dot>(s,tau)(p,q)(R-n) and prove that the dual space of F<(H)over dot>(s,tau)(p,q) (R-n) is just <(F)over dot>(-s,tau/q)(p',q')(R-n) when p, q epsilon (1, infinity). (C) 2008 Elsevier Inc. All fights reserved.
引用
收藏
页码:2760 / 2809
页数:50
相关论文
共 50 条
[21]   Decomposition of Besov and Triebel-Lizorkin spaces on the sphere [J].
Narcowich, F. ;
Petrushev, P. ;
Ward, J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) :530-564
[22]   Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type [J].
Yang, DC .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (02) :187-199
[23]   Reduction of integration domain in Triebel-Lizorkin spaces [J].
Rutkowski, Artur .
STUDIA MATHEMATICA, 2021, 259 (02) :121-152
[24]   DUALITY OF WEIGHTED MULTIPARAMETER TRIEBEL-LIZORKIN SPACES [J].
Ding, Wei ;
Zhu, Yueping .
ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) :1083-1104
[25]   The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces [J].
Xu, J. S. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (08) :599-605
[26]   Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type [J].
Dachun Yang .
Science in China Series A: Mathematics, 2003, 46 :187-199
[27]   Duality and interpolation of anisotropic Triebel-Lizorkin spaces [J].
Bownik, Marcin .
MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (01) :131-169
[28]   Some new inhomogeneous Triebel-Lizorkin spaces on metric measure spaces and their various characterizations [J].
Yang, DC .
STUDIA MATHEMATICA, 2005, 167 (01) :63-98
[29]   Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type [J].
杨大春 .
Science China Mathematics, 2003, (02) :187-199
[30]   Triebel-Lizorkin sequence spaces are genuine mixed-norm spaces [J].
Brigham, Dan ;
Mitrea, Dorina ;
Mitrea, Irina ;
Mitrea, Marius .
MATHEMATISCHE NACHRICHTEN, 2013, 286 (5-6) :503-517