GIANA Polyp Segmentation with Fully Convolutional Dilation Neural Networks

被引:37
作者
Guo, Yun Bo [1 ]
Matuszewski, Bogdan J. [1 ]
机构
[1] Univ Cent Lancashire, Sch Engn, Comp Vis & Machine Learning CVML, Res Grp, Preston, Lancs, England
来源
VISAPP: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4 | 2019年
关键词
Fully Convolutional Neural Networks; Dilation Convolution; Polyp Segmentation; Video Colonoscopy; Segmentation Quality; VALIDATION;
D O I
10.5220/0007698806320641
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Polyp detection and segmentation in colonoscopy images plays an important role in early detection of colorectal cancer. The paper describes methodology adopted for the EndoVisSub2017/2018 Gastrointestinal Image ANAlysis - (GIANA) polyp segmentation sub-challenges. The developed segmentation algorithms are based on the fully convolutional neural network (FCNN) model. Two novel variants of the FCNN have been investigated, implemented and evaluated. The first one, combines the deep residual network and the dilation kernel layers within the fully convolutional network framework. The second proposed architecture is based on the U-net network augmented by the dilation kernels and "squeeze and extraction" units. The proposed architectures have been evaluated against the well-known FCN8 model. The paper describes the adopted evaluation metrics and presents the results on the GIANA dataset. The proposed methods produced competitive results, securing the first place for the SD and HD image segmentation tasks at the 2017 GIANA challenge and the second place for the SD images at the 2018 GIANA challenge.
引用
收藏
页码:632 / 641
页数:10
相关论文
共 35 条
[1]   Color and position versus texture features for endoscopic polyp detection [J].
Alexandre, Luis A. ;
Nobre, Nuno ;
Casteleiro, Joao .
BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 2, 2008, :38-+
[2]  
[Anonymous], 2018, ARXIV180200368
[3]  
[Anonymous], 2015, PROC CVPR IEEE
[4]   Towards automatic polyp detection with a polyp appearance model [J].
Bernal, J. ;
Sanchez, J. ;
Vilarino, F. .
PATTERN RECOGNITION, 2012, 45 (09) :3166-3182
[5]   Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge [J].
Bernal, Jorge ;
Tajkbaksh, Nima ;
Sanchez, Francisco Javier ;
Matuszewski, Bogdan J. ;
Chen, Hao ;
Yu, Lequan ;
Angermann, Quentin ;
Romain, Olivier ;
Rustad, Bjorn ;
Balasingham, Ilangko ;
Pogorelov, Konstantin ;
Choi, Sungbin ;
Debard, Quentin ;
Maier-Hein, Lena ;
Speidel, Stefanie ;
Stoyanov, Danail ;
Brandao, Patrick ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Gurudu, Suryakanth R. ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Liang, Jianming ;
Histace, Aymeric .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) :1231-1249
[6]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[7]  
Bernal J, 2013, IEEE ENG MED BIO, P7350, DOI 10.1109/EMBC.2013.6611256
[8]  
Breier M., 2011, P 15 INT STUD C EL E, V2011
[9]   Active Contours for localizing polyps in colonoscopic NBI image data [J].
Breier, Matthias ;
Gross, Sebastian ;
Behrens, Alexander ;
Stehle, Thomas ;
Aach, Til .
MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963
[10]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848