Optimization of milling parameters using artificial neural network and artificial immune system

被引:25
|
作者
Mahdavinejad, Ramezan Ali [1 ,2 ]
Khani, Navid [1 ]
Fakhrabadi, Mir Masoud Seyyed [1 ]
机构
[1] Univ Tehran, Coll Engn, Sch Mech Engn, Tehran, Iran
[2] Univ Tehran, Fac Engn, Sch Mech Engn, Tehran, Iran
关键词
Milling; Ti-6Al-4V; Artificial neural network; Artificial immune system; FUZZY INFERENCE SYSTEM; SURFACE-ROUGHNESS; PREDICTION;
D O I
10.1007/s12206-012-0882-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present paper is an attempt to predict the effective milling parameters on the final surface roughness of the work-piece made of Ti-6Al-4V using a multi-perceptron artificial neural network. The required data were collected during the experiments conducted on the mentioned material. These parameters include cutting speed, feed per tooth and depth of cut. A relatively newly discovered optimization algorithm entitled, artificial immune system is used to find the best cutting conditions resulting in minimum surface roughness. Finally, the process of validation of the optimum condition is presented.
引用
收藏
页码:4097 / 4104
页数:8
相关论文
共 50 条
  • [21] Short Term Load Forecasting Using an Artificial Neural Network Trained by Artificial Immune System Learning Algorithm
    Hamid, M. B. Abdul
    Rahman, T. K. Abdul
    2010 12TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2010, : 408 - 413
  • [22] Proposed a new method for rules extraction using artificial neural network and artificial immune system in cancer diagnosis
    Javanmard, Reza
    JeddiSaravi, Kossar
    Alinejad-Rokny, Hamid
    Journal of Bionanoscience, 2013, 7 (06): : 665 - 672
  • [23] Multipoint milling tool supervision using artificial neural network approach
    Dhobale, Nilesh
    Mulik, Sharad
    Jegdeeshwaran, R.
    Ganer, Kaustubh
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 1898 - 1903
  • [24] Decision support system for tool condition monitoring in milling process using artificial neural network
    Mohanraj, T.
    Tamilvanan, A.
    JOURNAL OF ENGINEERING RESEARCH, 2022, 10 (4B): : 142 - 155
  • [25] Position parameters optimization of surface piercing propeller by artificial neural network
    Masoud Zarezadeh
    Nowrouz Mohammad Nouri
    Reza Madoliat
    Scientific Reports, 14
  • [26] Improved artificial fish algorithm for parameters optimization of PID neural network
    Wang, Jing
    Huang, Yourui
    Journal of Networks, 2013, 8 (08) : 1726 - 1733
  • [27] Position parameters optimization of surface piercing propeller by artificial neural network
    Zarezadeh, Masoud
    Nouri, Nowrouz Mohammad
    Madoliat, Reza
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [28] Artificial neural network optimization for FPGA
    Bonnici, Mark
    Gaff, Edward J.
    Micallef, Joseph
    Grech, Ivan
    2006 13TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2006, : 1340 - 1343
  • [29] Modeling & Analysis of End Milling Process parameters using Artificial Neural Networks
    Gowd, G. Harinath
    Theja, K. Divya
    Rayudu, P.
    Goud, M. Venugopal
    Rao, M. Subba
    DYNAMICS OF MACHINES AND MECHANISMS, INDUSTRIAL RESEARCH, 2014, 592-594 : 2733 - +
  • [30] Parameters Estimation of PV Models Using Artificial Neural Network
    Abdellatif, Hussein
    Hossain, Md Ismail
    Abido, Mohammad A.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (11) : 14947 - 14956