Active Modulation of States of Prestress in Self-Assembled Short Peptide Gels

被引:11
作者
Cox, Henry [1 ]
Cao, Meiwen [3 ]
Xu, Hai [3 ]
Waigh, Thomas A. [1 ,2 ]
Lu, Jian R. [1 ]
机构
[1] Univ Manchester, Biol Phys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Photon Sci Inst, Oxford Rd, Manchester M13 9PL, Lancs, England
[3] China Univ Petr East China, Ctr Bioengn & Biotechnol, 66 Changjiang West Rd, Qingdao 266580, Shandong, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
VOLUME PHASE-TRANSITION; SEMIFLEXIBLE POLYMERS; THERMAL FLUCTUATIONS; FILAMENTS; VISCOELASTICITY; HYDROGELATION; MICROTUBULES; FABRICATION; RHEOLOGY;
D O I
10.1021/acs.biomac.9b00085
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peptide hydrogels are excellent candidates for medical therapeutics due to their tuneable viscoelastic properties, however, in vivo they will be subject to various osmotic pressures, temperature changes, and biological co-solutes, which could alter their performance. Peptide hydrogels formed from the synthetic peptide I3K have a temperature-induced hardening of their shear modulus by a factor of 2. We show that the addition of uncross-linked poly(N-isopropylacrylamide) chains to the peptide gels increases the gels' temperature sensitivity by 3 orders of magnitude through the control of osmotic swelling and cross-linking. Using machine learning combined with single-molecule fluorescence microscopy, we measured the modulation of states of prestress in the gels on the level of single peptide fibers. A new self-consistent mixture model was developed to simultaneously quantify the energy and the length distributions of the states of prestress. Switching the temperature from 20 to 40 degrees C causes 6-fold increases in the number of states of prestress. At the higher temperature, many of the fibers experience constrained buckling with characteristic small wavelength oscillations in their curvature.
引用
收藏
页码:1719 / 1730
页数:12
相关论文
共 60 条
[1]   Enzymatic Regulation of Self-Assembling Peptide A9K2 Nanostructures and Hydrogelation with Highly Selective Antibacterial Activities [J].
Bai, Jingkun ;
Chen, Cuixia ;
Wang, Jingxin ;
Zhang, Yu ;
Cox, Henry ;
Zhang, Jing ;
Wang, Yuming ;
Penny, Jeffrey ;
Waigh, Thomas ;
Lu, Jian R. ;
Xu, Hai .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (24) :15093-15102
[2]   Enzymatic Cross-Linking of a Nanofibrous Peptide Hydrogel [J].
Bakota, Erica L. ;
Aulisa, Lorenzo ;
Galler, Kerstin M. ;
Hartgerink, Jeffrey D. .
BIOMACROMOLECULES, 2011, 12 (01) :82-87
[3]  
BISHOP C. M., 2006, Pattern recognition and machine learning, DOI [DOI 10.1117/1.2819119, 10.1007/978-0-387-45528-0]
[4]   Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking [J].
Brangwynne, Clifford P. ;
Koenderink, Gijsje H. ;
Barry, Ed ;
Dogic, Zvonimir ;
MacKintosh, Frederick C. ;
Weitz, David A. .
BIOPHYSICAL JOURNAL, 2007, 93 (01) :346-359
[5]   Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement [J].
Brangwynne, Clifford P. ;
MacKintosh, Frederick C. ;
Kumar, Sanjay ;
Geisse, Nicholas A. ;
Talbot, Jennifer ;
Mahadevan, L. ;
Parker, Kevin K. ;
Ingber, Donald E. ;
Weitz, David A. .
JOURNAL OF CELL BIOLOGY, 2006, 173 (05) :733-741
[6]   Modeling semiflexible polymer networks [J].
Broedersz, C. P. ;
MacKintosh, F. C. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (03) :995-1036
[7]   Cross-Link-Governed Dynamics of Biopolymer Networks [J].
Broedersz, Chase P. ;
Depken, Martin ;
Yao, Norman Y. ;
Pollak, Martin R. ;
Weitz, David A. ;
MacKintosh, Frederick C. .
PHYSICAL REVIEW LETTERS, 2010, 105 (23)
[8]   Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery [J].
Bromberg, LE ;
Ron, ES .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 31 (03) :197-221
[9]  
Cao M., 2019, REVERSIBLE THE UNPUB
[10]   Effects of Anions on Nanostructuring of Cationic Amphiphilic Peptides [J].
Cao, Meiwen ;
Wang, Yuming ;
Ge, Xin ;
Cao, Changhai ;
Wang, Jing ;
Xu, Hai ;
Xia, Daohong ;
Zhao, Xiubo ;
Lu, Jian R. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (41) :11862-11871