Nonlinear Scale Space with Spatially Varying Stopping Time

被引:20
作者
Gilboa, Guy [1 ]
机构
[1] 3DB Syst Ltd, IL-20692 Yokneam, Israel
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Image denoising; stopping time; scale space; nonlinear diffusion; SNR; spatially varying parameters;
D O I
10.1109/TPAMI.2008.23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A general scale-space algorithm is presented for denoising signals and images with spatially varying dominant scales. The process is formulated as a partial differential equation with spatially varying time. The proposed adaptivity is semilocal and is in conjunction with the classical gradient-based diffusion coefficient, designed to preserve edges. The new algorithm aims at maximizing a local SNR measure of the denoised image. It is based on a generalization of a global stopping time criterion presented recently by the author and his colleagues. Most notably, the method also works well for partially textured images and outperforms any selection of a global stopping time. Given an estimate of the noise variance, the procedure is automatic and can be applied well to most natural images.
引用
收藏
页码:2175 / 2187
页数:13
相关论文
共 46 条
[1]  
ALVAREZ L, 1993, ARCH RATIONAL MECH A, V123, P3
[2]  
[Anonymous], 1959, BASIC THEORY PATTERN
[3]  
[Anonymous], APPL MATH SCI
[4]   Structure-texture image decomposition - Modeling, algorithms, and parameter selection [J].
Aujol, JF ;
Gilboa, G ;
Chan, T ;
Osher, S .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 67 (01) :111-136
[5]  
AUJOL JF, 2005, J MATH IMAGING VISIO, V22
[7]   Robust anisotropic diffusion [J].
Black, MJ ;
Sapiro, G ;
Marimont, DH ;
Heeger, D .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :421-432
[8]  
Black MJ, 1999, LECT NOTES COMPUT SC, V1682, P259
[9]  
Burger M, 2006, COMMUN MATH SCI, V4, P179
[10]   Interpreting translation-invariant wavelet shrinkage as a new image smoothing scale space [J].
Chambolle, A ;
Lucier, BJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (07) :993-1000