Recent advances in physics and technology of ion cyclotron resonance heating in view of future fusion reactors

被引:20
作者
Ongena, J. [1 ]
Messiaen, A. [1 ]
Kazakov, Ye O. [1 ]
Koch, R. [1 ]
Ragona, R. [1 ]
Bobkov, V. [2 ]
Crombe, K. [1 ,3 ]
Durodie, F. [1 ]
Goniche, M. [4 ]
Krivska, A. [1 ]
Lerche, E. [1 ]
Louche, F. [1 ]
Lyssoivan, A. [1 ]
Vervier, M. [1 ]
Van Eester, D. [1 ]
Van Schoor, M. [1 ]
Wauters, T. [1 ]
Wright, J. [5 ]
Wukitch, S. [5 ]
机构
[1] TEC Partner, Ecole Royale Mil Koninklijke Mil Sch, Plasmaphys Lab, Brussels, Belgium
[2] Max Planck Inst Plasma Phys, Garching, Germany
[3] Univ Ghent, Dept Appl Phys, Ghent, Belgium
[4] CEA, IRFM, Cadarache, France
[5] MIT, Plasma Sci & Fus Ctr, Boston, MA USA
关键词
ICRF; tokamak; stellarator; plasma heating; ICRF heating scenarios; traveling wave antenna; ion cyclotron wall conditioning; ICRH ANTENNA; ASDEX UPGRADE; SYSTEM; JET; PLASMAS; TOKAMAK; LOAD;
D O I
10.1088/1361-6587/aa5a62
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Ion temperatures of over 100 million degrees need to be reached in future fusion reactors for the deuterium-tritium fusion reaction to work. Ion cyclotron resonance heating (ICRH) is a method that has the capability to directly heat ions to such high temperatures, via a resonant interaction between the plasma ions and radiofrequency waves launched in the plasma. This paper gives an overview of recent developments in this field. In particular a novel and recently developed three-ion heating scenario will be highlighted. It is a flexible scheme with the potential to accelerate heavy ions to high energies in high density plasmas as expected for future fusion reactors. New antenna designs will be needed for next step large future devices like DEMO, to deliver steady-state high power levels, cope with fast variations in coupling due to fast changes in the edge density and to reduce the possibility for impurity production. Such a new design is the traveling wave antenna (TWA) consisting of an array of straps distributed around the circumference of the machine, which is intrinsically resilient to edge density variations and has an optimized power coupling to the plasma. The structure of the paper is as follows: to provide the general reader with a basis for a good understanding of the later sections, an overview is given of wave propagation, coupling and RF power absorption in the ion cyclotron range of frequencies, including a brief summary of the traditionally used heating scenarios. A special highlight is the newly developed three-ion scenario together with its promising applications. A next section discusses recent developments to study edge-wave interaction and reduce impurity influx from ICRH: the dedicated devices IShTAR and Aline, field aligned and three-strap antenna concepts. The principles behind and the use of ICRH as an important option for first wall conditioning in devices with a permanent magnetic field is discussed next. The final section presents ongoing developments for antenna systems in next step devices like ITER and DEMO, with as highlight the TWA concept.
引用
收藏
页数:17
相关论文
共 76 条
[1]   Doppler-free Stark spectroscopy of the second excited level of atomic hydrogen for measurements of electric fields [J].
Adamov, Minja Gemisic ;
Steiger, Andreas ;
Gruetzmacher, Klaus ;
Seidel, Joachim .
PHYSICAL REVIEW A, 2007, 75 (01)
[2]  
Beaumont B, 2009, P 23 IEEE NUCL PLAS
[3]   Making ICRF power compatible with a high-Z wall in the ASDEX Upgrade [J].
Bobkov, V. ;
Aguiam, D. ;
Bilato, R. ;
Brezinsek, S. ;
Colas, L. ;
Faugel, H. ;
Fuenfgelder, H. ;
Herrmann, A. ;
Jacquot, J. ;
Kallenbach, A. ;
Milanesio, D. ;
Maggiora, R. ;
Neu, R. ;
Noterdaeme, J-M ;
Ochoukov, R. ;
Potzel, S. ;
Puetterich, T. ;
Silva, A. ;
Tierens, W. ;
Tuccilo, A. ;
Tudisco, O. ;
Wang, Y. ;
Yang, Q. ;
Zhang, W. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
[4]   Progress in Controlling ICRF-edge Interactions in ASDEX Upgrade [J].
Bobkov, Vl. ;
Jacquet, Ph. ;
Ochoukov, R. ;
Zhang, W. ;
Bilato, R. ;
Braun, F. ;
Carralero, D. ;
Colas, L. ;
Czarnecka, A. ;
Dux, R. ;
Faugel, H. ;
Funfgelder, H. ;
Jacquot, J. ;
Krivska, A. ;
Lunt, T. ;
Milanesio, D. ;
Maggiora, R. ;
Meyer, O. ;
Monakhov, I. ;
Noterdaeme, J. -M. ;
Potzel, S. ;
Putterich, Th. ;
Stepanov, I. .
RADIOFREQUENCY POWER IN PLASMAS, 2015, 1689
[5]   Trapped electron mode driven electron heat transport in JET: experimental investigation and gyro-kinetic theory validation [J].
Bonanomi, N. ;
Mantica, P. ;
Szepesi, G. ;
Hawkes, N. ;
Lerche, E. ;
Migliano, P. ;
Peeters, A. ;
Sozzi, C. ;
Tsalas, M. ;
Van Eester, D. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. .
NUCLEAR FUSION, 2015, 55 (11)
[6]  
BOSCHI A, 1963, NUOVO CIMENTO, V29, P485
[7]   High-power density ion cyclotron antennas for next step applications [J].
Bosia, G .
FUSION SCIENCE AND TECHNOLOGY, 2003, 43 (02) :153-160
[8]  
Buzankin V V, 1977, PLASMA PHYS CONTROLL, V3, P61
[9]   Theoretical description of heavy impurity transport and its application to the modelling of tungsten in JET and ASDEX upgrade [J].
Casson, F. J. ;
Angioni, C. ;
Belli, E. A. ;
Bilato, R. ;
Mantica, P. ;
Odstrcil, T. ;
Puetterich, T. ;
Valisa, M. ;
Garzotti, L. ;
Giroud, C. ;
Hobirk, J. ;
Maggi, C. F. ;
Mlynar, J. ;
Reinke, M. L. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (01)
[10]   Electric field induced Lyman-α emission of a hydrogen beam for electric field measurements [J].
Cherigier-Kovacic, L. ;
Strom, P. ;
Lejeune, A. ;
Doveil, F. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (06)