Slant submanifolds of quaternionic space forms

被引:24
作者
Vilcu, Gabriel Eduard [1 ]
机构
[1] Petr Gas Univ Ploiesti, Dept Math, Ploiesti 100680, Romania
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2012年 / 81卷 / 3-4期
关键词
Chen's invariant; scalar curvature; squared mean curvature; k-Ricci curvature; quaternionic space form; slant subnianifold; IDEAL LAGRANGIAN IMMERSIONS; TOTALLY-REAL-SUBMANIFOLDS; SHAPE OPERATOR; RICCI CURVATURE; MEAN-CURVATURE; INEQUALITIES; FOLIATIONS;
D O I
10.5486/PMD.2012.5273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish some inequalities concerning the k-Ricci curvature of a slant submanifold in a quaternionic space form. We also obtain obstructions to the existence of quaternionic slant immersions in quaternionic space forms with unfull first normal bundle.
引用
收藏
页码:397 / 413
页数:17
相关论文
共 38 条
[1]  
[Anonymous], 2011, Pseudo-Riemannian geometry, [delta]-invariants and applications
[2]  
Arslan K., 2002, INT J MATH MATH SCI, V29, P719
[3]  
Barros M., 1981, Kodai Math. J, P399
[4]  
Carriazo A, 2004, J KOREAN MATH SOC, V41, P795
[5]   Mean curvature and shape operator of isometric immersions in real-space-forms [J].
Chen, BY .
GLASGOW MATHEMATICAL JOURNAL, 1996, 38 :87-97
[6]   Ideal Lagrangian immersions in complex space forms [J].
Chen, BY .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 :511-533
[7]   First normal bundle of ideal Lagrangian immersions in complex space forms [J].
Chen, BY .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2005, 138 :461-464
[8]   Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions [J].
Chen, BY .
GLASGOW MATHEMATICAL JOURNAL, 1999, 41 :33-41
[9]  
CIOROBOIU D., 2003, ACTA MATH ACAD PAEDA, V19, P233
[10]   New relationships involving the mean curvature of slant submanifolds in S-space-forms [J].
Fernandez, Luis M. ;
Hans-Uber, Maria Belen .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (03) :647-659