ADAPTIVE FINITE ELEMENT METHOD FOR THE MAXWELL EIGENVALUE PROBLEM

被引:9
作者
Boffi, Daniele [1 ,2 ]
Gastaldi, Lucia [3 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, Pavia, Italy
[2] Aalto Univ, Dept Math & Syst Anal, Helsinki, Finland
[3] Univ Brescia, DICATAM, Brescia, Italy
关键词
edge finite elements; eigenvalue problem; Maxwell's equations; adaptive finite element method; POSTERIORI ERROR ESTIMATORS; DISCRETE COMPACTNESS; OPTIMAL CONVERGENCE; APPROXIMATION; OPTIMALITY; EQUATIONS;
D O I
10.1137/18M1179389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the optimal convergence of a standard adaptive scheme based on edge finite elements for the approximation of the solutions of the eigenvalue problem associated with Maxwell's equations. The proof uses the known equivalence of the problem of interest with a mixed eigenvalue problem.
引用
收藏
页码:478 / 494
页数:17
相关论文
共 44 条
[41]   The completion of locally refined simplicial partitions created by bisection [J].
Stevenson, Rob .
MATHEMATICS OF COMPUTATION, 2008, 77 (261) :227-241
[42]   Optimality of a standard adaptive finite element method [J].
Stevenson, Rob .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2007, 7 (02) :245-269
[43]   A posteriori error estimator for harmonic A-φ formulation [J].
Tang, Zuqi ;
Le Menach, Yvonnick ;
Creuse, Emmanuel ;
Nicaise, Serge ;
Piriou, Francis ;
Nemitz, Nicolas .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 32 (04) :1219-1229
[44]  
Zhong LQ, 2012, MATH COMPUT, V81, P623