Evolutionary responses to climate change in parasitic systems

被引:17
|
作者
Chaianunporn, Thotsapol [1 ]
Hovestadt, Thomas [1 ,2 ]
机构
[1] Univ Wurzburg, Field Stn Fabrikschleichach, Biozentrum, D-96181 Rauhenebrach, Germany
[2] Univ Ghent, Dept Biol TEREC, B-9000 Ghent, Belgium
关键词
climate change; commensalism; dispersal; parasitism; temperature preference; temperature tolerance; trade-off; BIOCLIMATE ENVELOPE MODELS; OF-ALL-TRADES; PHENOTYPIC PLASTICITY; SPECIES DISTRIBUTIONS; BIOTIC INTERACTIONS; HOST PLANTS; RANGE; DISPERSAL; HABITAT; SHIFTS;
D O I
10.1111/gcb.12944
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Species may respond to climate change in many ecological and evolutionary ways. In this simulation study, we focus on the concurrent evolution of three traits in response to climate change, namely dispersal probability, temperature tolerance (or niche width), and temperature preference (optimal habitat). More specifically, we consider evolutionary responses in host species involved in different types of interaction, that is parasitism or commensalism, and for low or high costs of a temperature tolerance-fertility trade-off (cost of generalization). We find that host species potentially evolve all three traits simultaneously in response to increasing temperature but that the evolutionary response interacts and may be compensatory depending on the conditions. The evolutionary adjustment of temperature preference is slower in the parasitism than in commensalism scenario. Parasitism, in turn, selects for higher temperature tolerance and increased dispersal. High costs for temperature tolerance (i.e. generalization) restrict evolution of tolerance and thus lead to a faster response in temperature preference than that observed under low costs. These results emphasize the possible role of biotic interactions and the importance of multidimensional' evolutionary responses to climate change.
引用
收藏
页码:2905 / 2916
页数:12
相关论文
共 50 条
  • [1] Evolutionary responses to climate change
    Skelly, David K.
    Joseph, Liana N.
    Possingham, Hugh P.
    Freidenburg, L. Kealoha
    Farrugia, Thomas J.
    Kinnison, Michael T.
    Hendry, Andrew P.
    CONSERVATION BIOLOGY, 2007, 21 (05) : 1353 - 1355
  • [2] Plastic and evolutionary responses to climate change in fish
    Crozier, Lisa G.
    Hutchings, Jeffrey A.
    EVOLUTIONARY APPLICATIONS, 2014, 7 (01): : 68 - 87
  • [3] Evolutionary and Ecological Responses to Anthropogenic Climate Change
    Anderson, Jill T.
    Panetta, Anne Marie
    Mitchell-Olds, Thomas
    PLANT PHYSIOLOGY, 2012, 160 (04) : 1728 - 1740
  • [4] Ecological and evolutionary responses to recent climate change
    Parmesan, Camille
    ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2006, 37 : 637 - 669
  • [5] Predicting evolutionary responses to climate change in the sea
    Munday, Philip L.
    Warner, Robert R.
    Monro, Keyne
    Pandolfi, John M.
    Marshall, Dustin J.
    ECOLOGY LETTERS, 2013, 16 (12) : 1488 - 1500
  • [6] The evolutionary genomics of species’ responses to climate change
    Jonás A. Aguirre-Liguori
    Santiago Ramírez-Barahona
    Brandon S. Gaut
    Nature Ecology & Evolution, 2021, 5 : 1350 - 1360
  • [7] The evolutionary genomics of species' responses to climate change
    Aguirre-Liguori, Jonas A.
    Ramirez-Barahona, Santiago
    Gaut, Brandon S.
    NATURE ECOLOGY & EVOLUTION, 2021, 5 (10) : 1350 - 1360
  • [8] Climate change and mammals: evolutionary versus plastic responses
    Boutin, Stan
    Lane, Jeffrey E.
    EVOLUTIONARY APPLICATIONS, 2014, 7 (01): : 29 - 41
  • [9] Evolutionary responses to climate change in a range expanding plant
    Mirka Macel
    Tomáš Dostálek
    Sonja Esch
    Anna Bucharová
    Nicole M. van Dam
    Katja Tielbörger
    Koen J. F. Verhoeven
    Zuzana Münzbergová
    Oecologia, 2017, 184 : 543 - 554
  • [10] Evolutionary responses to climate change in a range expanding plant
    Macel, Mirka
    Dostalek, Tomas
    Esch, Sonja
    Bucharova, Anna
    van Dam, Nicole M.
    Tielboerger, Katja
    Verhoeven, Koen J. F.
    Munzbergova, Zuzana
    OECOLOGIA, 2017, 184 (02) : 543 - 554