Reductants in Gold Nanoparticle Synthesis Using Gas-Liquid Interfacial Discharge Plasmas

被引:44
作者
Chen, Qiang [1 ]
Kaneko, Toshiro [1 ,2 ]
Hatakeyama, Rikizo [1 ]
机构
[1] Tohoku Univ, Dept Elect Engn, Sendai, Miyagi 9808579, Japan
[2] CREST JST, Chiyoda Ku, Tokyo 1020075, Japan
基金
日本学术振兴会;
关键词
HYDROGEN-PEROXIDE; AMINO-ACIDS; SURFACE; SIZE; CARBON; ELECTROLYSIS; ASSEMBLIES; ELECTRODES; REDUCTION; RESONANCE;
D O I
10.1143/APEX.5.086201
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report the origins and types of reductant in the discharge-plasma-induced gold nanoparticle (AuNP) synthesis. The formation of AuNPs by contacting Au(III)-containing solution with plasma is ascribed to two types of reductant generated by plasma-solution interaction, i.e., the short-lived reductants including free, secondary, and hydrated electrons, hydrogen as well as ultraviolet light, and a long-lived reductant, hydrogen peroxide which has normally been regarded as an oxidant in plasma-induced metal nanoparticle synthesis. We expect that the elucidation of the reductants involved will be beneficial for further understanding and control of plasma-induced metal nanoparticle synthesis. (C) 2012 The Japan Society of Applied Physics
引用
收藏
页数:3
相关论文
共 31 条
[1]   Efficient Synthesis of Gold Nanoparticles Using Ion Irradiation in Gas-Liquid Interfacial Plasmas [J].
Baba, Kazuhiko ;
Kaneko, Toshiro ;
Hatakeyama, Rikizo .
APPLIED PHYSICS EXPRESS, 2009, 2 (03)
[2]   Plasma-surface interactions on liquids [J].
Bastasz, R ;
Eckstein, W .
JOURNAL OF NUCLEAR MATERIALS, 2001, 290 :19-24
[3]   Oxidation-resistant gold-55 clusters [J].
Boyen, HG ;
Kästle, G ;
Weigl, F ;
Koslowski, B ;
Dietrich, C ;
Ziemann, P ;
Spatz, JP ;
Riethmüller, S ;
Hartmann, C ;
Möller, M ;
Schmid, G ;
Garnier, MG ;
Oelhafen, P .
SCIENCE, 2002, 297 (5586) :1533-1536
[4]   Size-Controlled Gold Nanoparticles Synthesized in Solution Plasma [J].
Bratescu, Maria Antoaneta ;
Cho, Sung-Pyo ;
Takai, Osamu ;
Saito, Nagahiro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (50) :24569-24576
[5]   Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma [J].
Chen, Qiang ;
Kaneko, Toshiro ;
Hatakeyama, Rikizo .
CHEMICAL PHYSICS LETTERS, 2012, 521 :113-117
[6]   Effects of ionic liquid electrode on pulse discharge plasmas in the wide range of gas pressures [J].
Chen, Qiang ;
Kaneko, Toshiro ;
Hatakeyama, Rikizo .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (10)
[7]   Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase [J].
Chiang, Wei-Hung ;
Richmonds, Carolyn ;
Sankaran, R. Mohan .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (03)
[8]   A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode [J].
Cui, Kang ;
Song, Yonghai ;
Yao, Yong ;
Huang, Zhenzhong ;
Wang, Li .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (04) :663-667
[9]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[10]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22