Graphene nano-heterostructures for quantum devices

被引:14
作者
Bischoff, D. [1 ]
Eich, M. [1 ]
Varlet, A. [1 ]
Simonet, P. [1 ]
Overweg, H. C. [1 ]
Ensslin, K. [1 ]
Ihn, T. [1 ]
机构
[1] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
HEXAGONAL BORON-NITRIDE; TOPOLOGICAL VALLEY TRANSPORT; DIRAC FERMIONS; TRANSITION; CONFINEMENT; GENERATION; MEMBRANES; JUNCTIONS; CRYSTALS; SPIN;
D O I
10.1016/j.mattod.2016.02.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ten years ago, the exfoliation of graphene started the field of layered two-dimensional materials. Today, there is a huge variety of two-dimensional materials available for both research and applications. The different dimensionality compared to their bulk relatives is responsible for a wealth of novel properties of these layered two-dimensional materials. The true strength of two-dimensional materials is however the possibility to stack different layers on top of each other to engineer new heterostructures with specifically tailored properties. Known as van-der-Waals heterostructures, they enable the experimental observation of a variety of new phenomena. By patterning the individual layers laterally into nanostructures, additional functionality can be added to the devices. This review provides a glimpse at the future opportunities offered by van-der-Waals stacked nanodevices.
引用
收藏
页码:375 / 381
页数:7
相关论文
共 95 条
[1]   Gate-defined quantum confinement in suspended bilayer graphene [J].
Allen, M. T. ;
Martin, J. ;
Yacoby, A. .
NATURE COMMUNICATIONS, 2012, 3
[2]  
Allen M.T., 2015, NAT PHYS
[3]   Spin-orbit proximity effect in graphene [J].
Avsar, A. ;
Tan, J. Y. ;
Taychatanapat, T. ;
Balakrishnan, J. ;
Koon, G. K. W. ;
Yeo, Y. ;
Lahiri, J. ;
Carvalho, A. ;
Rodin, A. S. ;
O'Farrell, E. C. T. ;
Eda, G. ;
Castro Neto, A. H. ;
Oezyilmaz, B. .
NATURE COMMUNICATIONS, 2014, 5
[4]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]   Measurement Back-Action in Stacked Graphene Quantum Dots [J].
Bischoff, D. ;
Eich, M. ;
Zilberberg, O. ;
Roessler, C. ;
Ihn, T. ;
Ensslin, K. .
NANO LETTERS, 2015, 15 (09) :6003-6008
[7]   Localized charge carriers in graphene nanodevices [J].
Bischoff, D. ;
Varlet, A. ;
Simonet, P. ;
Eich, M. ;
Overweg, H. C. ;
Ihn, T. ;
Ensslin, K. .
APPLIED PHYSICS REVIEWS, 2015, 2 (03)
[8]   Measuring the local quantum capacitance of graphene using a strongly coupled graphene nanoribbon [J].
Bischoff, D. ;
Eich, M. ;
Varlet, A. ;
Simonet, P. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2015, 91 (11)
[9]   Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate [J].
Bischoff, D. ;
Libisch, F. ;
Burgdoerfer, J. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2014, 90 (11)
[10]   Electronic triple-dot transport through a bilayer graphene island with ultrasmall constrictions [J].
Bischoff, D. ;
Varlet, A. ;
Simonet, P. ;
Ihn, T. ;
Ensslin, K. .
NEW JOURNAL OF PHYSICS, 2013, 15