Spectral asymptotics for the third order operator with periodic coefficients

被引:12
作者
Badanin, Andrey [1 ]
Korotyaev, Eygeny [2 ,3 ]
机构
[1] No Arctic Fed Univ, Arkhangelsk 163002, Russia
[2] St Petersburg State Univ, Fac Phys, Dept Math Phys, St Petersburg 198904, Russia
[3] Pushkin Leningrad State Univ, St Petersburg, Russia
关键词
Third order operator with periodic coefficients; Spectral asymptotics; BORG-TYPE THEOREMS; SCHRODINGER-OPERATORS; DIFFERENTIAL-OPERATORS; BOUSSINESQ EQUATION; INVERSE PROBLEM; TRACE FORMULAS; UNIQUENESS;
D O I
10.1016/j.jde.2012.08.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the self-adjoint third order operator with 1-periodic coefficients on the real line. The spectrum of the operator is absolutely continuous and covers the real line. We determine the high energy asymptotics of the periodic, antiperiodic eigenvalues and of the branch points of the Lyapunov function. Furthermore, in the case of small coefficients we show that either whole spectrum has multiplicity one or the spectrum has multiplicity one except for a small spectral nonempty interval with multiplicity three. In the last case the asymptotics of this small interval is determined. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3113 / 3146
页数:34
相关论文
共 47 条
  • [1] Isospectral flows of third order operators
    Amour, L
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 32 (06) : 1375 - 1389
  • [2] [Anonymous], 2004, METH FUNCT ANAL TOPO
  • [3] [Anonymous], 1988, Math. Surveys Monogr.
  • [4] The Lyapunov function for Schrodinger operators with a periodic 2x2 matrix potential
    Badanin, A
    Brüning, J
    Korotyaev, E
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (01) : 106 - 126
  • [5] Badanin A, 2005, INT MATH RES NOTICES, V2005, P2775
  • [6] Badanin A, 2011, ARXIV11124587
  • [7] Badanin AV, 2011, ST PETERSB MATH J+, V22, P703
  • [8] Even Order Periodic Operators on the Real Line
    Badanin, Andrey
    Korotyaev, Evgeny L.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (05) : 1143 - 1194
  • [9] INVERSE PROBLEM FOR A VIBRATING BEAM
    BARCILON, V
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1976, 27 (03): : 347 - 357
  • [10] The Boussinesq equation revisited
    Bogdanov, L
    Zakharov, VE
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2002, 165 (3-4) : 137 - 162