Photovoltage at semiconductor-electrolyte junctions

被引:62
作者
Mayer, Matthew T. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, Lab Photon & Interfaces, Stn 6, CH-1015 Lausanne, Switzerland
关键词
HEMATITE PHOTOANODES; SURFACE MODIFICATION; HYDROGEN-PRODUCTION; CARRIER DYNAMICS; WATER OXIDATION; CURRENT STATE; IRON-OXIDE; SOLAR; EFFICIENCY; PHOTOELECTRODES;
D O I
10.1016/j.coelec.2017.03.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photoelectrochemical (PEC) cells based on an interfacial electric field formed at a semiconductor-electrolyte junction aim to achieve solar-driven water electrolysis at low cost and with low complexity. When targeting real devices with competitive efficiencies, one must critically understand the photovoltage demands on each photoabsorber as they relate to its band gap and its role in a tandem device. Now four decades after the first observations of PEC phenomena, device photovoltages remain below their target values for the most widely-studied materials, although innovative approaches have shown encouraging progress. This brief review summarizes the most recent advances in understanding and improving PEC device photovoltages.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 59 条
[1]   The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting [J].
Braun, Artur ;
Hu, Yelin ;
Boudoire, Florent ;
Bora, Debajeet K. ;
Sarma, D. D. ;
Graetzel, Michael ;
Eggleston, Carrick M. .
CATALYSIS TODAY, 2016, 260 :72-81
[2]   Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion [J].
Castelli, Ivano E. ;
Thygesen, Kristian S. ;
Jacobsen, Karsten W. .
TOPICS IN CATALYSIS, 2014, 57 (1-4) :265-272
[3]   Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution [J].
Chen, Shiyou ;
Wang, Lin-Wang .
CHEMISTRY OF MATERIALS, 2012, 24 (18) :3659-3666
[4]  
Chen Z., 2013, PHOTOELECTROCHEMICAL
[5]   Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation [J].
Coridan, Robert H. ;
Nielander, Adam C. ;
Francis, Sonja A. ;
McDowell, Matthew T. ;
Dix, Victoria ;
Chatman, Shawn M. ;
Lewis, Nathan S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2886-2901
[6]   Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels [J].
Cowan, Alexander J. ;
Durrant, James R. .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2281-2293
[7]   Sunlight absorption in water - efficiency and design implications for photoelectrochemical devices [J].
Doescher, H. ;
Geisz, J. F. ;
Deutsch, T. G. ;
Turner, J. A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) :2951-2956
[8]   Observation and Alteration of Surface States of Hematite Photoelectrodes [J].
Du, Chun ;
Zhang, Ming ;
Jang, Ji-Wook ;
Liu, Yang ;
Liu, Gang-Yu ;
Wang, Dunwei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (30) :17054-17059
[9]   Hematite-Based Water Splitting with Low Turn-On Voltages [J].
Du, Chun ;
Yang, Xiaogang ;
Mayer, Matthew T. ;
Hoyt, Henry ;
Xie, Jin ;
McMahon, Gregory ;
Bischoping, Gregory ;
Wang, Dunwei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (48) :12692-12695
[10]   Efficiency limits for photoelectrochemical water-splitting [J].
Fountaine, Katherine T. ;
Lewerenz, Hans Joachim ;
Atwater, Harry A. .
Nature Communications, 2016, 7