Patterned Surfaces for Solar-Driven Interfacial Evaporation

被引:58
|
作者
Luo, Yini [1 ]
Fu, Benwei [1 ]
Shen, Qingchen [1 ]
Hao, Wei [1 ]
Xu, Jiale [1 ]
Min, Mengdie [1 ]
Liu, Yanming [1 ]
An, Shun [1 ]
Song, Chengyi [1 ]
Tao, Peng [1 ]
Wu, Jianbo [1 ]
Shang, Wen [1 ]
Deng, Tao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
interfacial evaporation; heat and mass transfer; photo-thermal conversion; solar energy harvesting; localized heating; STEAM-GENERATION; ONE SUN; GRAPHENE; DESALINATION; NANOPARTICLES; TECHNOLOGY; EFFICIENT; ENERGY;
D O I
10.1021/acsami.8b20653
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solar-driven interfacial evaporation, as one of the most effective ways to convert and utilize solar energy, has attracted lot of interest recently. Most of the previous research studies, however, mainly focused on nonpatterned solar absorbers by improving the structural and chemical characteristics of the solar absorbers used in the interfacial evaporation systems. In this work, we investigated the influence of patterned surface on the evaporation performance of solar absorbers. The patterned surfaces studied, which include black patterns and white patterns, were achieved by selectively printing carbon black on the air-laid paper. Sueh a design leads to the lateral temperature differences between adjacent patterns of the solar absorber under solar illumination. The temperature differences result in the lateral heat and mass transfer between those patterns, which can effectively accelerate solar-driven vapor generation. With similar patterns and same coverage of carbon black, the increase in the circumference of the surface patterns leads to the increase in the evaporation performance. Additionally, we found that the evaporation performance can be optimized through the design of surface patterns, which demonstrates the potential in reducing the usage of the light-absorbing materials in the solar absorber. The findings in this work not only expand the understanding of the interfacial evaporation systems but also offer additional guidelines in designing interfacial evaporation systems.
引用
收藏
页码:7584 / 7590
页数:7
相关论文
共 50 条
  • [41] Facile Preparation of a Carbon-Based Hybrid Film for Efficient Solar-Driven Interfacial Water Evaporation
    Sun, Hanxue
    Li, Yuanzhen
    Li, Jiyan
    Zhu, Zhaoqi
    Zhang, Wanting
    Liang, Weidong
    Ma, Chonghua
    Li, An
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (28) : 33427 - 33436
  • [42] Electrically Conductive Carbon Aerogels with High Salt-Resistance for Efficient Solar-Driven Interfacial Evaporation
    Li, Lingxiao
    Hu, Tao
    Li, An
    Zhang, Junping
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (28) : 32143 - 32153
  • [43] Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems
    Sheng, Minhao
    Yang, Yawei
    Bin, Xiaoqing
    Zhao, Shihan
    Pan, Cheng
    Nawaz, Fahad
    Que, Wenxiu
    NANO ENERGY, 2021, 89
  • [44] Wood-based solar-driven interfacial evaporators: Design and application
    Ma, Xiancheng
    Su, Rongkui
    Zeng, Zheng
    Li, Liqing
    Wang, Hanqing
    Wang, Shaobin
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [45] Band Gap Engineering in an Efficient Solar-Driven Interfacial Evaporation System
    Ying, Peijin
    Li, Meng
    Yu, Feilin
    Geng, Yang
    Zhang, Liyang
    He, Junjie
    Zheng, Yujie
    Chen, Rong
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (29) : 32880 - 32887
  • [46] Recent advances in MXene-based membrane for solar-driven interfacial evaporation desalination
    Zhou, Peilei
    Zhu, Quanji
    Sun, Xiaoxia
    Liu, Li
    Cai, Zhengwei
    Xu, Jia
    CHEMICAL ENGINEERING JOURNAL, 2023, 464
  • [47] High-efficiency wood-based evaporators for solar-driven interfacial evaporation
    Li, Yunqi
    Li, Qing
    Qiu, Yu
    Feng, Haixiang
    SOLAR ENERGY, 2022, 244 : 322 - 330
  • [48] Reduced graphene oxide composite nanowood for solar-driven interfacial evaporation and electricity generation
    Li, Zhijing
    Chen, Dakai
    Gao, Huan
    Xie, Huaqing
    Yu, Wei
    APPLIED THERMAL ENGINEERING, 2023, 223
  • [49] Acid-doped polyaniline membranes for solar-driven interfacial evaporation
    Xia Li
    Dongmin Yue
    Fei Liu
    Jingtong Yu
    Bingbing Li
    De Sun
    Xin Ma
    Korean Journal of Chemical Engineering, 2023, 40 : 223 - 234
  • [50] Strategies for enhancing the photothermal conversion efficiency of solar-driven interfacial evaporation
    Xiao, Yumeng
    Guo, Hongmin
    Li, Meng
    He, Jiasen
    Xu, Xin
    Liu, Sichen
    Wang, Lidong
    James, Tony D.
    COORDINATION CHEMISTRY REVIEWS, 2025, 527