Patterned Surfaces for Solar-Driven Interfacial Evaporation

被引:58
|
作者
Luo, Yini [1 ]
Fu, Benwei [1 ]
Shen, Qingchen [1 ]
Hao, Wei [1 ]
Xu, Jiale [1 ]
Min, Mengdie [1 ]
Liu, Yanming [1 ]
An, Shun [1 ]
Song, Chengyi [1 ]
Tao, Peng [1 ]
Wu, Jianbo [1 ]
Shang, Wen [1 ]
Deng, Tao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
interfacial evaporation; heat and mass transfer; photo-thermal conversion; solar energy harvesting; localized heating; STEAM-GENERATION; ONE SUN; GRAPHENE; DESALINATION; NANOPARTICLES; TECHNOLOGY; EFFICIENT; ENERGY;
D O I
10.1021/acsami.8b20653
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solar-driven interfacial evaporation, as one of the most effective ways to convert and utilize solar energy, has attracted lot of interest recently. Most of the previous research studies, however, mainly focused on nonpatterned solar absorbers by improving the structural and chemical characteristics of the solar absorbers used in the interfacial evaporation systems. In this work, we investigated the influence of patterned surface on the evaporation performance of solar absorbers. The patterned surfaces studied, which include black patterns and white patterns, were achieved by selectively printing carbon black on the air-laid paper. Sueh a design leads to the lateral temperature differences between adjacent patterns of the solar absorber under solar illumination. The temperature differences result in the lateral heat and mass transfer between those patterns, which can effectively accelerate solar-driven vapor generation. With similar patterns and same coverage of carbon black, the increase in the circumference of the surface patterns leads to the increase in the evaporation performance. Additionally, we found that the evaporation performance can be optimized through the design of surface patterns, which demonstrates the potential in reducing the usage of the light-absorbing materials in the solar absorber. The findings in this work not only expand the understanding of the interfacial evaporation systems but also offer additional guidelines in designing interfacial evaporation systems.
引用
收藏
页码:7584 / 7590
页数:7
相关论文
共 50 条
  • [1] Solar-driven interfacial evaporation
    Tao, Peng
    Ni, George
    Song, Chengyi
    Shang, Wen
    Wu, Jianbo
    Zhu, Jia
    Chen, Gang
    Deng, Tao
    NATURE ENERGY, 2018, 3 (12): : 1031 - 1041
  • [2] Advancing Efficiency in Solar-Driven Interfacial Evaporation: Strategies and Applications
    Hou, Lanlan
    Li, Shuai
    Qi, Yingqun
    Liu, Jingchong
    Cui, Zhimin
    Liu, Xiaofei
    Zhang, Ying
    Wang, Nu
    Zhao, Yong
    ACS NANO, 2025, 19 (10) : 9636 - 9683
  • [3] Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications
    Zhu, Liangliang
    Gao, Minmin
    Peh, Connor Kang Nuo
    Ho, Ghim Wei
    NANO ENERGY, 2019, 57 : 507 - 518
  • [4] Application of natural mineral in round-the-clock solar-driven interfacial evaporation system: A review
    Mu, Yunan
    Shuai, Pengfei
    Liao, Libing
    Gu, Xiaobin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (03):
  • [5] Solar-driven interfacial water evaporation for wastewater purification: Recent advances and challenges
    Cui, Lingfang
    Wang, Peifang
    Che, Huinan
    Chen, Juan
    Liu, Bin
    Ao, Yanhui
    CHEMICAL ENGINEERING JOURNAL, 2023, 477
  • [6] Recent progress of solar-driven interfacial evaporation based on organic semiconductor materials
    Wu, Jia-Li
    Han, Sheng-Jie
    Xu, Lei
    Wang, Zhen-Yu
    Labiadh, Lazhar
    Fu, Ming-Lai
    Yuan, Baoling
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 326
  • [7] Hydrodynamic solar-driven interfacial evaporation - Gone with the flow
    Ren, Jiawei
    Xu, Jia
    Tian, Shuangchao
    Shi, Ke
    Gu, Tianyu
    Zhao, Jiaheng
    Li, Xing
    Zhou, Zhiwei
    Tijing, Leonard
    Shon, Ho Kyong
    WATER RESEARCH, 2024, 266
  • [8] Optimization of Evaporation and Condensation Architectures for Solar-Driven Interfacial Evaporation Desalination
    Pan, Cheng
    Yang, Yawei
    Xie, Mingze
    Deng, Qingyuan
    Cheng, Xiang
    Wang, Xianlei
    Zhao, Shihan
    Wei, Yumeng
    Que, Wenxiu
    MEMBRANES, 2022, 12 (09)
  • [9] Recent research advances in efficient solar-driven interfacial evaporation
    Zhou, Mingyu
    Zhang, Lijing
    Tao, Shengyang
    Li, Renyuan
    Wang, Yuchao
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [10] Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization
    Ding, Tianpeng
    Zhou, Yi
    Ong, Wei Li
    Ho, Ghim Wei
    MATERIALS TODAY, 2021, 42 : 178 - 191