Least energy sign-changing solution to a fractional p-Laplacian problem involving singularities

被引:0
作者
Ghosh, S. [1 ]
Saoudi, K. [2 ,3 ]
Kratou, M. [2 ,3 ]
Choudhuri, D. [1 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela, India
[2] Imam Abdulrahman Bin Faisal Univ, Coll Sci Dammam, Dammam 31441, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, POB 1982, Dammam 31441, Saudi Arabia
关键词
Sign-changing solutions; Factional p-Laplacian; Nehari manifold; Singularity; Brouwer degree; SCHRODINGER-POISSON SYSTEM; NODAL SOLUTIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY; CONCAVE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of a least energy sign-changing solution to a nonlocal elliptic PDE involving singularities by using the Nehari manifold method, the constraint variational method and Brouwer degree theory.
引用
收藏
页码:97 / 115
页数:19
相关论文
共 41 条
[1]  
Adams R.A, 1975, PURE APPL MATH, V65
[2]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[3]  
[Anonymous], 2001, ADV DIFFERENTIAL EQU
[4]   Nodal solutions of a p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :129-152
[5]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[6]   On a superlinear elliptic p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :149-175
[7]  
Bartsch T., 1996, Topol. Methods Nonlinear Anal., V7, P115, DOI 10.12775/TMNA.1996.005
[8]   On a property of the nodal set of least energy sign-changing solutions for quasilinear elliptic equations [J].
Bobkov, Vladimir ;
Kolonitskii, Sergey .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (05) :1163-1173
[9]   Existence and symmetry of least energy nodal solutions for Hamiltonian elliptic systems [J].
Bonheure, Denis ;
dos Santos, Ederson Moreira ;
Ramos, Miguel ;
Tavares, Hugo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06) :1075-1107
[10]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71