Least energy sign-changing solution to a fractional p-Laplacian problem involving singularities

被引:0
作者
Ghosh, S. [1 ]
Saoudi, K. [2 ,3 ]
Kratou, M. [2 ,3 ]
Choudhuri, D. [1 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela, India
[2] Imam Abdulrahman Bin Faisal Univ, Coll Sci Dammam, Dammam 31441, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, POB 1982, Dammam 31441, Saudi Arabia
关键词
Sign-changing solutions; Factional p-Laplacian; Nehari manifold; Singularity; Brouwer degree; SCHRODINGER-POISSON SYSTEM; NODAL SOLUTIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY; CONCAVE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of a least energy sign-changing solution to a nonlocal elliptic PDE involving singularities by using the Nehari manifold method, the constraint variational method and Brouwer degree theory.
引用
收藏
页码:97 / 115
页数:19
相关论文
共 41 条
  • [1] Adams R. A., 1975, PURE APPL MATH, V65
  • [2] Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains
    Alves, Claudianor O.
    Souto, Marco A. S.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1153 - 1166
  • [3] [Anonymous], 2001, ADV DIFFERENTIAL EQU
  • [4] Nodal solutions of a p-Laplacian equation
    Bartsch, T
    Liu, ZL
    Weth, T
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 : 129 - 152
  • [5] Three nodal solutions of singularly perturbed elliptic equations on domains without topology
    Bartsch, T
    Weth, T
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03): : 259 - 281
  • [6] On a superlinear elliptic p-Laplacian equation
    Bartsch, T
    Liu, ZL
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) : 149 - 175
  • [7] Bartsch T., 1996, Topol Methods Nonlinear Anal, V7, P115, DOI DOI 10.12775/TMNA.1996.005
  • [8] On a property of the nodal set of least energy sign-changing solutions for quasilinear elliptic equations
    Bobkov, Vladimir
    Kolonitskii, Sergey
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (05) : 1163 - 1173
  • [9] Existence and symmetry of least energy nodal solutions for Hamiltonian elliptic systems
    Bonheure, Denis
    dos Santos, Ederson Moreira
    Ramos, Miguel
    Tavares, Hugo
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06): : 1075 - 1107
  • [10] A concave-convex elliptic problem involving the fractional Laplacian
    Braendle, C.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) : 39 - 71