Achieving micron-scale plasticity and theoretical strength in Silicon

被引:73
作者
Chen, Ming [1 ]
Pethoe, Laszlo [2 ]
Sologubenko, Alla S. [1 ]
Ma, Huan [3 ]
Michler, Johann [2 ]
Spolenak, Ralph [1 ]
Wheeler, Jeffrey M. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mat Sci, Lab Nanomet, Vladimir Prelog Weg 5, CH-8093 Zurich, Switzerland
[2] Swiss Fed Labs Mat Sci & Technol, Empa, Lab Mech Mat & Nanostruct, Feuerwerkerstr 39, CH-3602 Thun, Switzerland
[3] Swiss Fed Labs Mat Sci & Technol, Empa, Lab Transport Nanoscale Interfaces, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
基金
瑞士国家科学基金会;
关键词
DISLOCATION NUCLEATION; MICROPILLAR COMPRESSION; DUCTILE TRANSITION; ROOM-TEMPERATURE; SINGLE-CRYSTALS; YIELD STRENGTH; SURFACE-STEP; HIGH-STRESS; DEFORMATION; SIZE;
D O I
10.1038/s41467-020-16384-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As the backbone material of the information age, silicon is extensively used as a functional semiconductor and structural material in microelectronics and microsystems. At ambient temperature, the brittleness of Si limits its mechanical application in devices. Here, we demonstrate that Si processed by modern lithography procedures exhibits an ultrahigh elastic strain limit, near ideal strength (shear strength -4 GPa) and plastic deformation at the micron-scale, one order of magnitude larger than samples made using focused ion beams, due to superior surface quality. This extended elastic regime enables enhanced functional properties by allowing higher elastic strains to modify the band structure. Further, the micron-scale plasticity of Si allows the investigation of the intrinsic size effects and dislocation behavior in diamond-structured materials. This reveals a transition in deformation mechanisms from full to partial dislocations upon increasing specimen size at ambient temperature. This study demonstrates a surface engineering pathway for fabrication of more robust Si-based structures.
引用
收藏
页数:10
相关论文
共 67 条
[1]   Temperature-dependent size effects on the strength of Ta and W micropillars [J].
Abad, Oscar Torrents ;
Wheeler, Jeffrey M. ;
Michler, Johann ;
Schneider, Andreas S. ;
Arzt, Eduard .
ACTA MATERIALIA, 2016, 103 :483-494
[2]   STACKING FAULT ENERGY IN SILICON [J].
AERTS, E ;
SIEMS, R ;
DELAVIGNETTE, P ;
AMELINCKX, S .
JOURNAL OF APPLIED PHYSICS, 1962, 33 (10) :3078-&
[3]   Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars [J].
Bei, H. ;
Shim, S. ;
Pharr, G. M. ;
George, E. P. .
ACTA MATERIALIA, 2008, 56 (17) :4762-4770
[4]   Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal [J].
Bei, H. ;
Shim, S. .
APPLIED PHYSICS LETTERS, 2007, 91 (11)
[5]  
Bhardwaj JK, 1995, P SOC PHOTO-OPT INS, V2639, P224, DOI 10.1117/12.221279
[6]  
Brochard S, 1998, PHILOS MAG A, V77, P911, DOI 10.1080/01418619808221219
[7]   Nucleation of partial dislocations from a surface-step in semiconductors: a first approach of the mobility effect [J].
Brochard, S ;
Rabier, J ;
Grilhe, J .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 1998, 2 (02) :99-105
[8]  
Chen LY, 2015, NAT MATER, V14, P707, DOI [10.1038/NMAT4288, 10.1038/nmat4288]
[9]   High-Temperature In situ Deformation of GaAs Micro-pillars: Lithography Versus FIB Machining [J].
Chen, M. ;
Wehrs, J. ;
Michler, J. ;
Wheeler, J. M. .
JOM, 2016, 68 (11) :2761-2767
[10]   Size-dependent plasticity and activation parameters of lithographically-produced silicon micropillars [J].
Chen, Ming ;
Wehrs, Juri ;
Sologubenko, Alla S. ;
Rabier, Jacques ;
Michler, Johann ;
Wheeler, Jeffrey M. .
MATERIALS & DESIGN, 2020, 189