The complete mitochondrial genome sequence of spinach, Spinacia oleracea L

被引:5
|
作者
Cai, Xiaofeng [1 ]
Jiao, Chen [2 ]
Sun, Honghe [2 ]
Wang, Xiaoli [1 ]
Xu, Chenxi [1 ]
Fei, Zhangjun [1 ,2 ]
Wang, Quanhua [1 ]
机构
[1] Shanghai Normal Univ, Coll Life & Environm Sci, Dev & Collaborat Innovat Ctr Plant Germplasm Reso, Shanghai, Peoples R China
[2] Cornell Univ, Boyce Thompson Inst, Ithaca, NY 14850 USA
来源
MITOCHONDRIAL DNA PART B-RESOURCES | 2017年 / 2卷 / 01期
基金
中国国家自然科学基金;
关键词
Spinach; mitochondrial genome; next generation sequencing;
D O I
10.1080/23802359.2017.1334518
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Spinach (Spinacia oleracea L.) is an economically important vegetable crop. Here we describe the complete mitochondrial DNA sequence of spinach, which has a length of 329,613 bp and a GC content of 43.4%. It is separated by a pair of directly repeated elements of 7286 bp, to form a large single copy region of 229,375 bp and a small single copy region of 85,666 bp. The genome contains 29 protein-coding genes, 4 pseudogenes, 24 tRNA genes, and 3 rRNA genes. A phylogenetic analysis revealed that spinach was closely related to Beta vulgaris (sugar beet), both belonging to the Amaranthaceae family.
引用
收藏
页码:339 / 340
页数:2
相关论文
共 50 条
  • [41] The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.)
    Smolen, Sylwester
    Ledwozyw-Smolen, Iwona
    Sady, Wlodzimierz
    PLANT AND SOIL, 2016, 402 (1-2) : 129 - 143
  • [42] Extreme precipitation enhances phenolic concentrations of spinach (Spinacia oleracea)
    Buckley, Sarabeth
    Ahmed, Selena
    Griffin, Timothy
    Orians, Colin
    JOURNAL OF CROP IMPROVEMENT, 2020, 34 (05) : 618 - 636
  • [43] The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.)
    Sylwester Smoleń
    Iwona Ledwożyw-Smoleń
    Włodzimierz Sady
    Plant and Soil, 2016, 402 : 129 - 143
  • [44] Characterization of genetic resistance to cucumber mosaic virus (CMV) in spinach (Spinacia oleracea L.)
    Wu, Yue
    Hirakawa, Hideki
    Masuta, Chikara
    Onodera, Yasuyuki
    BMC RESEARCH NOTES, 2024, 17 (01)
  • [45] Transient expression of UreB of Helicobacter pylori in spinach (Spinacia oleracea)
    Abdoli-nasab, Maryam
    Torabi-nia, Narjes
    SCIENTIA HORTICULTURAE, 2019, 247 : 320 - 326
  • [46] Effect of LED lights on the antioxidant properties of baby spinach leaves (Spinacia oleracea L. )
    Battistoni, Benjamin
    Amoros, Asuncion
    Tapia, Maria Luisa
    Escalona, Victor
    REVISTA DE LA FACULTAD DE CIENCIAS AGRARIAS, 2021, 53 (01) : 98 - 108
  • [47] Transcriptome profiling of differentially expressed genes of male and female inflorescences in spinach (Spinacia oleracea L.)
    Liu, Zhiyuan
    Wang, Haoying
    Xu, Zhaosheng
    Zhang, Helong
    Li, Guoliang
    Wang, Xiaowu
    Qian, Wei
    GENOME, 2021, 64 (08) : 777 - 788
  • [48] EXTRACTION OF HEAVY METALS FROM MANURE AND THEIR BIOAVAILABILITY TO SPINACH (SPINACIA OLERACEA L.) AFTER COMPOSTING
    Irshad, M.
    Gul, Shazia
    Eneji, A. Egrinya
    Anwar, Zobia
    Ashraf, M.
    JOURNAL OF PLANT NUTRITION, 2014, 37 (10) : 1661 - 1675
  • [49] Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution
    Dai, J. L.
    Zhu, Y. G.
    Huang, Y. Z.
    Zhang, M.
    Song, J. L.
    PLANT AND SOIL, 2006, 289 (1-2) : 301 - 308
  • [50] Shoot regeneration from cultured root explants of spinach (Spinacia oleracea L):: a system for Agrobacterium transformation
    Knoll, KA
    Short, KC
    Curtis, IS
    Power, JB
    Davey, MR
    PLANT CELL REPORTS, 1997, 17 (02) : 96 - 101