Bulk Nanostructured Materials Design for Fracture-Resistant Lithium Metal Anodes

被引:110
作者
Liu, Shan [1 ]
Deng, Lijun [2 ]
Guo, Wenqing [1 ]
Zhang, Chanyuan [1 ]
Liu, Xingjiang [1 ]
Luo, Jiayan [1 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Minist Educ,Sch Chem Engn & Technol, State Key Lab Chem Engn,Key Lab Green Chem Techno, Tianjin 300072, Peoples R China
[2] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
bulk nanostructured materials; fracture-resistant; Li metal anodes; maximum capacity; rate capability; SOLID-ELECTROLYTE INTERPHASE; CHALLENGES; DEPOSITION; DIFFUSION; GROWTH; CARBON; SIO2; FILM; MG;
D O I
10.1002/adma.201807585
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li metal is an ideal anode for next-generation batteries because of its high theoretical capacity and low potential. However, the unevenly distributed stress in Li metal anodes (LMAs) induced by volume fluctuation may cause the electrode to fracture easily, especially during high-rate plating/stripping processes. Here fracture-resistant LMAs using the concept of bulk nanostructured materials are designed via a metallurgical process. In bulk nanostructured Li (BNL), ionic conducting phases exist at grain boundaries, which promote Li+ transport. The refined Li grain size and precipitation hardening in BNL enhances the mechanical strength and fatigue endurance, alleviating the unevenly distributed stress and preventing electrode pulverization. Density functional theory is used to investigate the binding energy between Li and various kinds of oxides and SiO2 is found to be optimal additive among screened oxides. BNL has 91% of the theoretical capacity of Li metal. In full cells with BNL anode, LiFePO4 could deliver capacity of 90 mAh g(-1) at 10C, an order of magnitude higher than that in full cells with Li foil anode. This strategy is expected to pave the way for fracture-resistant LMAs in high-rate cycling with maximum capacity.
引用
收藏
页数:7
相关论文
共 52 条
[1]  
[Anonymous], 2009, Bulk Nanostructured Materials
[2]   Diffusion in nanocrystalline nickel [J].
Bokstein, BS ;
Brose, HD ;
Trusov, LI ;
Khvostantseva, TP .
NANOSTRUCTURED MATERIALS, 1995, 6 (5-8) :873-876
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Quartz (SiO2): a new energy storage anode material for Li-ion batteries [J].
Chang, Won-Seok ;
Park, Cheol-Min ;
Kim, Jae-Hun ;
Kim, Young-Ugk ;
Jeong, Goojin ;
Sohn, Hun-Joon .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6895-6899
[5]   A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles [J].
Choudhury, Snehashis ;
Mangal, Rahul ;
Agrawal, Akanksha ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2015, 6
[6]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[7]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[8]   Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase [J].
Fan, Lei ;
Li, Siyuan ;
Liu, Lei ;
Zhang, Weidong ;
Gao, Lina ;
Fu, Yao ;
Chen, Fang ;
Li, Jing ;
Zhuang, Houlong L. ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (33)
[9]   Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries [J].
Gao, Yue ;
Zhao, Yuming ;
Li, Yuguang C. ;
Huang, Qingquan ;
Mallouk, Thomas E. ;
Wang, Donghai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (43) :15288-15291
[10]   Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries [J].
Guo, Bingkun ;
Shu, Jie ;
Wang, Zhaoxiang ;
Yang, Hong ;
Shi, Lihong ;
Liu, Yinong ;
Chen, Liquan .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1876-1878