SECOND-ORDER MUSCL SCHEMES BASED ON DUAL MESH GRADIENT RECONSTRUCTION (DMGR)

被引:8
作者
Berthon, Christophe [1 ]
Coudiere, Yves [2 ,3 ]
Desveaux, Vivien [1 ]
机构
[1] Univ Nantes, CNRS UMR 6629, Lab Math Jean Leray, F-44322 Nantes 3, France
[2] Univ Bordeaux 1, CNRS UMR 5251, Inst Math Bordeaux, F-33405 Talence, France
[3] INRIA Sud Ouest, F-33405 Talence, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2014年 / 48卷 / 02期
关键词
Systems of conservation laws; MUSCL method; unstructured meshes; dual mesh; invariant region; FINITE-VOLUME SCHEMES; HYPERBOLIC CONSERVATION-LAWS; UNSTRUCTURED GRIDS; EULER EQUATIONS; DIFFUSION OPERATORS; SLOPE LIMITERS; GAS-DYNAMICS; APPROXIMATION; SOLVERS; FLOW;
D O I
10.1051/m2an/2013105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss new MUSCL reconstructions to approximate the solutions of hyperbolic systems of conservations laws on 2D unstructured meshes. To address such an issue, we write two MUSCL schemes on two overlapping meshes. A gradient reconstruction procedure is next defined by involving both approximations coming from each MUSCL scheme. This process increases the number of numerical unknowns, but it allows to reconstruct very accurate gradients. Moreover a particular at is paid on the limitation procedure to enforce the required robustness property. Indeed, the invariant region is usually preserved at the expense of a more restrictive CFL condition. Here, we try to optimize this condition in order to reduce the computational cost.
引用
收藏
页码:583 / 602
页数:20
相关论文
共 46 条
[1]   DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS [J].
Andreianov, B. ;
Bendahmane, M. ;
Karlsen, K. H. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (01) :1-67
[2]   Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes [J].
Andreianov, Boris ;
Boyer, Franck ;
Hubert, Florence .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) :145-195
[3]  
[Anonymous], 43 AIAA AER SCI M
[4]  
[Anonymous], 2002, Cambridge Texts in Applied Mathematics, DOI [10.1017/CBO9780511791253, DOI 10.1017/CBO9780511791253]
[5]  
[Anonymous], AIAA AER SCI M 27 RE
[6]  
Berthon C, 2005, COMMUN MATH SCI, V3, P133
[7]   Robustness of MUSCL schemes for 2D unstructured meshes [J].
Berthon, Christophe .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (02) :495-509
[8]   Numerical approximations of the 10-moment Gaussian closure [J].
Berthon, Christophe .
MATHEMATICS OF COMPUTATION, 2006, 75 (256) :1809-1831
[9]   A MUSCL method satisfying all the numerical entropy inequalities [J].
Bouchut, F ;
Bourdarias, C ;
Perthame, B .
MATHEMATICS OF COMPUTATION, 1996, 65 (216) :1439-1461
[10]  
Bouchut F., 2004, Frontiers in Mathematics, Birkhauser