Homogenization of fully overdamped Frenkel-Kontorova models

被引:31
作者
Forcadel, N. [2 ,3 ,4 ]
Imbert, C. [1 ]
Monneau, R. [2 ]
机构
[1] Univ Paris 09, CNRS, CEREMADE, UMR 7534, F-75775 Paris 16, France
[2] Paris Est ENPC, CERMICS, F-77455 Marne La Vallee 2, France
[3] Ecole Polytech, CMAP INRIA Futurs, Projet Commands, F-91128 Palaiseau, France
[4] UMA, ENSTA, F-75739 Paris 15, France
关键词
Particle systems; Periodic homogenization; Frenkel-Kontorova models; Hamilton-Jacobi equations; Hull function; Cumulative distribution function; Slepcev formulation; HAMILTON-JACOBI EQUATIONS; VISCOSITY SOLUTIONS; DEVILS STAIRCASE;
D O I
10.1016/j.jde.2008.06.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the fully overdamped Frenkel-Kontorova model. This is an infinite system of coupled first-order ODEs. Each ODE represents the microscopic evolution of one particle interacting with its neighbors and Submitted to a fixed periodic potential. After a proper rescaling, a macroscopic model describing the evolution of densities of particles is obtained. We get this homogenization result for a general class of Frenkel-Kontorova models. The proof is based on the construction of suitable hull functions in the framework of viscosity solutions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1057 / 1097
页数:41
相关论文
共 21 条
[1]  
[Anonymous], 1938, PHYS SOVIET
[2]  
[Anonymous], FRENKEL KONTOROVA MO
[3]   EXACT MODELS WITH A COMPLETE DEVILS STAIRCASE [J].
AUBRY, S .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (13) :2497-2508
[4]   THE TWIST MAP, THE EXTENDED FRENKEL-KONTOROVA MODEL AND THE DEVILS STAIRCASE [J].
AUBRY, S .
PHYSICA D, 1983, 7 (1-3) :240-258
[5]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[6]   Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations [J].
Bacaër, N .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (06) :1185-1195
[7]  
Barles G., 1994, MATH APPL BERLIN, V17
[8]   Some homogenization results for non-coercive Hamilton-Jacobi equations [J].
Barles, Guy .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (04) :449-466
[9]  
Boccardo Lucio., 1984, Portugal. Math, V41, P535
[10]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67