Highly stable implicit-explicit Runge-Kutta methods

被引:53
作者
Izzo, Giuseppe [1 ]
Jackiewicz, Zdzislaw [2 ,3 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[2] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[3] AGH Univ Sci & Technol, Krakow, Poland
关键词
Runge-Kutta methods; Implicit-explicit methods; Stability analysis; Strong stability preserving; Courant-Friedrichs-Levy condition; Hyperbolic conservation laws; HYPERBOLIC SYSTEMS; SCHEMES;
D O I
10.1016/j.apnum.2016.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate implicit-explicit (IMEX) Runge-Kutta (RK) methods for differential systems with non-stiff and stiff processes. The construction of such methods with large regions of absolute stability of the 'explicit part' of the method assuming that the 'implicit part' of the scheme is A-stable, is described. We also describe the construction of IMEX RK methods, where the 'explicit part' of the schemes have strong stability properties. Examples of highly stable IMEX RK methods are provided up to the order p = 4. Numerical examples are also given which illustrate good performance of these schemes. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 92
页数:22
相关论文
共 35 条
[21]   A GENERAL-CLASS OF 2-STEP RUNGE-KUTTA METHODS FOR ORDINARY DIFFERENTIAL-EQUATIONS [J].
JACKIEWICZ, Z ;
TRACOGNA, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (05) :1390-1427
[22]  
JACKIEWICZ Z., 2009, GEN LINEAR METHODS O
[23]   RUNGE-KUTTA METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH STIFF RELAXATION TERMS [J].
JIN, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (01) :51-67
[24]  
Kennedy C.A., 2001, NASATM2001211038 LAN
[25]   Additive Runge-Kutta schemes for convection-diffusion-reaction equations [J].
Kennedy, CA ;
Carpenter, MH .
APPLIED NUMERICAL MATHEMATICS, 2003, 44 (1-2) :139-181
[26]   STRONG STABILITY PRESERVING TWO-STEP RUNGE-KUTTA METHODS [J].
Ketcheson, David I. ;
Gottlieb, Sigal ;
Macdonald, Colin B. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) :2618-2639
[27]   Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation [J].
Pareschi, L ;
Russo, G .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (01) :129-155
[28]  
Pareschi L., 2001, Advances Theory Computational Mathematics, V3, P269
[29]   COMPLEX PATTERNS IN A SIMPLE SYSTEM [J].
PEARSON, JE .
SCIENCE, 1993, 261 (5118) :189-192
[30]   SIMPLE CHEMICAL-REACTION SYSTEMS WITH LIMIT-CYCLE BEHAVIOR [J].
SCHNAKENBERG, J .
JOURNAL OF THEORETICAL BIOLOGY, 1979, 81 (03) :389-400