New Symmetric Periodic Solutions for the Maxwell-Bloch Differential System

被引:5
作者
Candido, M. R. [1 ]
Llibre, J. [2 ]
Valls, C. [3 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, Rua Sergio Baruque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Univ Lisbon, Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal
基金
欧盟地平线“2020”; 巴西圣保罗研究基金会;
关键词
Maxwell-Bloch; Averaging theory; Periodic solutions; Zero-Hopf bifurcations; EQUATIONS;
D O I
10.1007/s11040-019-9313-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide sufficient conditions for the existence of a pair of symmetric periodic solutions in the Maxwell-Bloch differential equations modeling laser systems. These periodic solutions come from a zero-Hopf bifurcation studied using recent results in averaging theory.
引用
收藏
页数:13
相关论文
共 11 条
[1]   CHAOS AND GENERALIZED MULTISTABILITY IN QUANTUM OPTICS [J].
ARECCHI, FT .
PHYSICA SCRIPTA, 1985, T9 :85-92
[2]   Stability of Periodic Orbits in the Averaging Theory: Applications to Lorenz and Thomas Differential Systems [J].
Candido, Murilo R. ;
Llibre, Jaume .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (03)
[3]   Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction [J].
Candido, Murilo R. ;
Llibre, Jaume ;
Novaes, Douglas D. .
NONLINEARITY, 2017, 30 (09) :3560-3586
[4]   Stability and Integrability Aspects for the Maxwell - Bloch Equations with the Rotating Wave Approximation [J].
Casu, Ioan ;
Lazureanu, Cristian .
REGULAR & CHAOTIC DYNAMICS, 2017, 22 (02) :109-121
[5]   On a Hamilton-Poisson Approach of the Maxwell-Bloch Equations with a Control [J].
Lazureanu, Cristian .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (03)
[6]   The Real-Valued Maxwell-Bloch Equations with Controls: From a Hamilton-Poisson System to a Chaotic One [J].
Lazureanu, Cristian .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09)
[7]   Identifying weak foci and centers in the Maxwell-Bloch system [J].
Liu, Lingling ;
Aybar, O. Ozgur ;
Romanovski, Valery G. ;
Zhang, Weinian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) :549-571
[8]   Improving the averaging theory for computing periodic solutions of the differential equations [J].
Llibre, Jaume ;
Novaes, Douglas D. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :1401-1412
[9]   Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system [J].
Wang, Lei ;
Wang, Zi-Qi ;
Sun, Wen-Rong ;
Shi, Yu-Ying ;
Li, Min ;
Xu, Min .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 47 :190-199
[10]   Periodic and rational solutions of the reduced Maxwell-Bloch equations [J].
Wei, Jiao ;
Wang, Xin ;
Geng, Xianguo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 :1-14