Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators

被引:21
作者
Jiang, Hao [1 ]
Liu, Jun [1 ]
Luo, Shi-chao [1 ]
Wang, Jun-yuan [1 ]
Huang, Wei [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Scramjet Lab, Changsha 410073, Peoples R China
来源
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A | 2020年 / 21卷 / 09期
关键词
Hypersonic; Shock wave; turbulent boundary layer interaction; Magnetohydrodynamic (MHD); Flow control; V211; 48;
D O I
10.1631/jzus.A2000025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of magnetohydrodynamic (MHD) plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation. A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma. Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected. On the basis of the relative position of control area and separation point, MHD control can be divided into four types and so effects and mechanisms might be different. Amongst these, D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region. A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied. The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets.
引用
收藏
页码:745 / 760
页数:16
相关论文
共 41 条
[1]  
Adamovich I.V., 2010, ENCY AEROSP ENG, P1, DOI [10.1002/9780470686652.eae042, DOI 10.1002/9780470686652.EAE042]
[2]   Control of separated flow in a reflected shock interaction using a magnetically-accelerated surface discharge [J].
Atkinson, Michael D. ;
Poggie, Jonathan ;
Camberos, Jose A. .
PHYSICS OF FLUIDS, 2012, 24 (12)
[3]   Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions [J].
Babinsky, H. ;
Li, Y. ;
Ford, C. W. Pitt .
AIAA JOURNAL, 2009, 47 (03) :668-675
[4]  
Babinsky H, 2011, SHOCK WAVE BOUNDARY, P28
[5]  
Bisek N, 2013, P 51 AIAA AER SCI M, DOI [10.2514/6.2013-528, DOI 10.2514/6.2013-528]
[6]   Plasma Control of a Turbulent Shock Boundary-Layer Interaction [J].
Bisek, Nicholas J. ;
Rizzetta, Donald P. ;
Poggie, Jonathan .
AIAA JOURNAL, 2013, 51 (08) :1789-1804
[7]  
Brown J.L., 2011, 20113143 AIAA, DOI [10.2514/6.2011-3143, DOI 10.2514/6.2011-3143]
[8]  
Chapman D. M., 1958, NACA
[9]  
Dietiker JF, 2002, P 40 AIAA AER SCI M, DOI [10.2514/6.2002-130, DOI 10.2514/6.2002-130]
[10]   Progress in shock wave/boundary layer interactions [J].
Gaitonde, Datta V. .
PROGRESS IN AEROSPACE SCIENCES, 2015, 72 :80-99