Kinetic equations modelling wealth redistribution: A comparison of approaches

被引:98
作者
Duering, Bertram [1 ]
Matthes, Daniel [1 ]
Toscani, Giuseppe [2 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 05期
关键词
D O I
10.1103/PhysRevE.78.056103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Kinetic equations modelling the redistribution of wealth in simple market economies is one of the major topics in the field of econophysics. We present a unifying approach to the qualitative study for a large variety of such models, which is based on a moment analysis in the related homogeneous Boltzmann equation, and on the use of suitable metrics for probability measures. In consequence, we are able to classify the most important feature of the steady wealth distribution, namely the fatness of the Pareto tail, and the dynamical stability of the latter in terms of the model parameters. Our results apply, e.g., to the market model with risky investments [S. Cordier, L. Pareschi, and G. Toscani, J. Stat. Phys. 120, 253 (2005)], and to the model with quenched saving propensities [A. Chatterjee, B. K. Chakrabarti, and S. S. Manna, Physica A 335, 155 (2004)]. Also, we present results from numerical experiments that confirm the theoretical predictions.
引用
收藏
页数:12
相关论文
共 39 条
  • [2] [Anonymous], PRACTICAL FRUITS ECO
  • [3] Wealth condensation in a simple model of economy
    Bouchaud, JP
    Mézard, M
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 282 (3-4) : 536 - 545
  • [4] Wealth condensation in pareto macroeconomics
    Burda, Z.
    Johnston, D.
    Jurkiewicz, J.
    Kamiński, M.
    Nowak, M.A.
    Papp, G.
    Zahed, I.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (02): : 1 - 026102
  • [5] Carrillo JA, 2007, RIV MAT UNIV PARMA, V6, P75
  • [6] CHAKRABARTI B. K., 2006, ECONOPHYSICS SOCIOPH
  • [7] Statistical mechanics of money: how saving propensity affects its distribution
    Chakraborti, A
    Chakrabarti, BK
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2000, 17 (01) : 167 - 170
  • [8] Distributions of money in model markets of economy
    Chakraborti, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (10): : 1315 - 1321
  • [9] Kinetic exchange models for income and wealth distributions
    Chatterjee, A.
    Chakrabarti, B. K.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2007, 60 (02) : 135 - 149
  • [10] Master equation for a kinetic model of a trading market and its analytic solution
    Chatterjee, A
    Chakrabarti, BK
    Stinchcombe, RB
    [J]. PHYSICAL REVIEW E, 2005, 72 (02):