Nilsystems and ergodic averages along primes

被引:2
作者
Eisner, Tanja [1 ]
机构
[1] Univ Leipzig, Inst Math, POB 100 920, D-04009 Leipzig, Germany
关键词
ergodic averages along primes; nilsystems; everywhere convergence; CIRCLE METHOD APPROACH; MULTIPLE RECURRENCE; THEOREM; CONVERGENCE; POLYNOMIALS; SEQUENCES; SZEMEREDI; UNIFORMITY; BEHAVIOR;
D O I
10.1017/etds.2019.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A celebrated result by Bourgain and Wierdl states that ergodic averages along primes converge almost everywhere for L-p-functions, p > 1, with a polynomial version by Wierdl and Nair. Using an anti-correlation result for the von Mangoldt function due to Green and Tao, we observe everywhere convergence of such averages for nilsystems and continuous functions.
引用
收藏
页码:2769 / 2777
页数:9
相关论文
共 43 条
[1]  
Auslander L., 1963, ANN MATH STUDIES, V53
[2]   Intersective polynomials and the polynomial Szemeredi theorem [J].
Bergelson, V. ;
Leibman, A. ;
Lesigne, E. .
ADVANCES IN MATHEMATICS, 2008, 219 (01) :369-388
[3]   Multiple recurrence and nilsequences [J].
Bergelson, V ;
Host, B ;
Kra, B ;
Ruzsa, I .
INVENTIONES MATHEMATICAE, 2005, 160 (02) :261-303
[4]   Distribution of values of bounded generalized polynomials [J].
Bergelson, Vitaly ;
Leibman, Alexander .
ACTA MATHEMATICA, 2007, 198 (02) :155-230
[5]   The shifted primes and the multidimensional Szemeredi and polynomial Van der Waerden theorems [J].
Bergelson, Vitaly ;
Leibman, Alexander ;
Ziegler, Tamar .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (3-4) :123-125
[6]  
BOURGAIN J, 1988, LECT NOTES MATH, V1317, P204
[7]  
BOURGAIN J, 1989, PUBL MATH-PARIS, P5
[8]   ON THE POINTWISE ERGODIC THEOREM ON LP FOR ARITHMETIC SETS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (01) :73-84
[9]  
Chu Q, 2009, P AM MATH SOC, V137, P1363
[10]  
CONZE JP, 1988, CR ACAD SCI I-MATH, V306, P491