PENCIL-BEAM APPROXIMATION OF STATIONARY FOKKER-PLANCK

被引:3
作者
Bal, Guillaume [1 ,2 ]
Palacios, Benjamin [1 ,2 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Fokker-Planck; Fermi pencil-beam; narrow beam; Wasserstein distance; EQUATION; STABILITY;
D O I
10.1137/19M1295775
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solutions of stationary Fokker-Planck equations in the narrow beam regime are commonly approximated by either ballistic linear transport or a Fermi pencil-beam equation. We present a rigorous approximation analysis of these three models in a half-space geometry. Error estimates are obtained in a 1-Wasserstein sense, which is an adapted metric to quantify beam spreading. The required well-posedness and regularity results for the stationary Fokker-Planck equation with singular internal and boundary sources are also presented in detail.
引用
收藏
页码:3487 / 3519
页数:33
相关论文
共 31 条
[1]   The Radiative Transfer Equation in the Forward-Peaked Regime [J].
Alonso, Ricardo ;
Sun, Weiran .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (03) :1233-1286
[2]   The Fokker-Planck operator as an asymptotic limit in anisotropic media [J].
Asadzadeh, M .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (9-10) :1119-1133
[3]   GENERALIZED STABILITY ESTIMATES IN INVERSE TRANSPORT THEORY [J].
Bal, Guillaume ;
Jollivet, Alexandre .
INVERSE PROBLEMS AND IMAGING, 2018, 12 (01) :59-90
[4]   KINETIC LIMITS FOR WAVES IN A RANDOM MEDIUM [J].
Bal, Guillaume ;
Komorowski, Tomasz ;
Ryzhik, Lenya .
KINETIC AND RELATED MODELS, 2010, 3 (04) :529-644
[5]  
Bardos C., 1970, ANN SCI COLE NORM SU, P185
[6]  
Borgers C, 1996, NUCL SCI ENG, V123, P343
[7]  
Borgers C, 1996, MED PHYS, V23, P1749, DOI 10.1118/1.597832
[8]   Hypoelliptic regularity in kinetic equations [J].
Bouchut, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (11) :1135-1159
[9]  
Bramanti M., 2014, An Invitation to Hypoelliptic Operators and Hormander's Vector Fields
[10]  
Carrillo JA, 1998, MATH METHOD APPL SCI, V21, P907, DOI 10.1002/(SICI)1099-1476(19980710)21:10<907::AID-MMA977>3.0.CO