Computations of vector-valued Siegel modular forms

被引:2
作者
Ghitza, Alexandru [1 ]
Ryan, Nathan C. [2 ]
Sulon, David [3 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
[2] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
[3] Drexel Univ, Dept Math, Philadelphia, PA USA
基金
澳大利亚研究理事会;
关键词
Siegel modular forms; Critical values; Congruences between modular forms; SQUARE L-FUNCTIONS; HECKE OPERATORS;
D O I
10.1016/j.jnt.2013.04.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We carry out some computations of vector-valued Siegel modular forms of degree two, weight (k, 2) and level one, and highlight three experimental results: (1) we identify a rational eigenform in a three-dimensional space of cusp forms; (2) we observe that non-cuspidal eigenforms of level one are not always rational; (3) we verify a number of cases of conjectures about congruences between classical modular forms and Siegel modular forms. Our approach is based on Satoh's description of the module of vector-valued Siegel modular forms of weight (k, 2) and an explicit description of the Hecke action on Fourier expansions. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3921 / 3940
页数:20
相关论文
共 32 条
[1]  
Andrianov A. N., 1987, GRUNDLEHREN MATH WIS, V286, DOI [10.1007/978-3-642-70341-6, DOI 10.1007/978-3-642-70341-6]
[2]  
[Anonymous], 1973, MATH USSR SB
[3]  
[Anonymous], ARXIV10044699
[4]  
[Anonymous], 2012, Sage for power users
[5]  
Bergstrom J., 2011, ARXIV11083731
[6]  
Cade D., 2009, FPLLL 3 0 FLOATING P
[7]  
Dokchitser T., 2002, COMPUTEL V1 3 PARI P
[8]   Symmetric square L-functions and Shafarevich-Tate groups [J].
Dummigan, N .
EXPERIMENTAL MATHEMATICS, 2001, 10 (03) :383-400
[9]   SYMMETRIC SQUARE L-FUNCTIONS AND SHAFAREVICH-TATE GROUPS, II [J].
Dummigan, Neil .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (07) :1321-1345
[10]  
Harder G., 2008, 1 2 3 MODULAR FORMS, P247, DOI 10.1007/978-3-540-74119-04