700 bar type IV high pressure hydrogen storage vessel burst - Simulation and experimental validation

被引:119
作者
Ramirez, Juan Pedro Berro [1 ]
Halm, Damien [1 ]
Grandidier, Jean-Claude [1 ]
Villalonga, Stephane [1 ,2 ]
Nony, Fabien [2 ]
机构
[1] Univ Poitiers, CNRS, ENSMA, Inst Pprime,Dept Phys & Mech Mat,UPR 3346, F-86961 Futuroscope, France
[2] CEA, DAM, F-37260 Le Ripault, Monts, France
关键词
Wound composite vessel; Finite element simulation; Burst prediction; Damage mode; DIRECTIONS DAMAGE MODEL; COMPOSITE; THICKNESS;
D O I
10.1016/j.ijhydene.2015.05.126
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The damage model described in [12,13] is used to predict the burst pressure and the burst mode of type IV hyperbaric tanks for hydrogen storage. The shape of the composite shell (as well as the fibre orientation at each point) ensuring the mechanical strength comes from the plug-in Wound Composite Modeler. The FE simulations are found not only to predict the global behaviour of the vessel (radial and axial displacement when undergoing an increasing inner pressure, burst pressure value), but also the damage modes at the ply scale. Thus, they are capable of explaining phenomena such as the non linearity due to the presence of a gap between the liner and the composite shell or the possible leaks due to delamination in the dome and providing the strain level in each composite layer. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13183 / 13192
页数:10
相关论文
共 17 条
[1]   Polymer and composite foam for hydrogen storage application [J].
Banyay, G. A. ;
Shaltout, M. M. ;
Tiwari, H. ;
Mehta, B. V. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 191 (1-3) :102-105
[2]  
Barral K, 2006, 16 WORLD HYDR EN C L
[3]  
Duvaut G., 1976, INEQUALITIES MECH PH, Vfirst, DOI [10.1007/978-3-642-66165-5, DOI 10.1007/978-3-642-66165-5]
[4]  
Gray D, 2004, 40 AIAA ASME SAE ASE
[5]   Residual stress and thermal expansion of graphite epoxy laminates subjected to cryogenic temperatures [J].
Ifju, Peter ;
Myers, Donald ;
Schulz, William .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (14) :2449-2455
[6]   Progressive damage modeling in fiber-reinforced materials [J].
Lapczyk, Ireneusz ;
Hurtado, Juan A. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2007, 38 (11) :2333-2341
[7]   Hydrogen storage for fuel cell systems with stationary applications -: I.: Transient measurement technique for packed bed evaluation [J].
Lévesque, S ;
Ciureanu, M ;
Roberge, R ;
Motyka, T .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (11) :1095-1105
[8]   Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: A review [J].
Mishnaevsky, Leon, Jr. ;
Brondsted, Povl .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 44 (04) :1351-1359
[9]   Analysis of filament wound composite structures considering the change of winding angles through the thickness direction [J].
Park, JS ;
Hong, CS ;
Kim, CG ;
Kim, CU .
COMPOSITE STRUCTURES, 2002, 55 (01) :63-71
[10]   A fixed directions damage model for composite materials dedicated to hyperbaric type IV hydrogen storage vessel - Part II: Validation on notched structures [J].
Ramirez, Juan Pedro Berro ;
Halm, Damien ;
Grandidier, Jean-Claude ;
Villalonga, Stephane .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (38) :13174-13182