Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study

被引:8
作者
Paula, Daniela Polessa [1 ]
Aguiar, Odaleia Barbosa [2 ]
Marques, Larissa Pruner [3 ]
Bensenor, Isabela [4 ,5 ]
Suemoto, Claudia Kimie [6 ]
Mendes da Fonseca, Maria de Jesus [7 ]
Griep, Rosane Harter [8 ]
机构
[1] Brazilian Inst Geog & Stat, Natl Sch Stat Sci, Rio De Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Inst Nutr, Rio De Janeiro, Brazil
[3] Fundacao Oswaldo Cruz, Natl Sch Publ Hlth, Rio De Janeiro, Brazil
[4] Univ Sao Paulo, Fac Med, Dept Internal Med, Sao Paulo, Brazil
[5] Univ Sao Paulo, Univ Hosp, Sao Paulo, Brazil
[6] Univ Sao Paulo, Div Geriatr, Dept Clin Med, Fac Med, Sao Paulo, Brazil
[7] Natl Sch Publ Hlth ENSP Fiocruz, Dept Epidemiol, Rio De Janeiro, Brazil
[8] Oswaldo Cruz Inst, Hlth & Environm Educ Lab, Rio De Janeiro, Brazil
关键词
MULTILABEL CLASSIFICATION; POPULATION; PATTERNS; MODEL; CARE;
D O I
10.1371/journal.pone.0275619
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Multimorbidity is a worldwide concern related to greater disability, worse quality of life, and mortality. The early prediction is crucial for preventive strategies design and integrative medical practice. However, knowledge about how to predict multimorbidity is limited, possibly due to the complexity involved in predicting multiple chronic diseases. Methods In this study, we present the use of a machine learning approach to build cost-effective multimorbidity prediction models. Based on predictors easily obtainable in clinical practice (sociodemographic, clinical, family disease history and lifestyle), we build and compared the performance of seven multilabel classifiers (multivariate random forest, and classifier chain, binary relevance and binary dependence, with random forest and support vector machine as base classifiers), using a sample of 15105 participants from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). We developed a web application for the building and use of prediction models. Results Classifier chain with random forest as base classifier performed better (accuracy = 0.34, subset accuracy = 0.15, and Hamming Loss = 0.16). For different feature sets, random forest based classifiers outperformed those based on support vector machine. BMI, blood pressure, sex, and age were the features most relevant to multimorbidity prediction. Conclusions Our results support the choice of random forest based classifiers for multimorbidity prediction.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Reference range of serum uric acid and prevalence of hyperuricemia: a cross-sectional study from baseline data of ELSA-Brasil cohort [J].
Dorio, Murillo ;
Bensenor, Isabela M. ;
Lotufo, Paulo ;
Santos, Itamar S. ;
Fuller, Ricardo .
ADVANCES IN RHEUMATOLOGY, 2022, 62 (01)
[32]   Depression is associated with increased adiposity in a 4-year follow-up: results from the ELSA-Brasil [J].
Silva, Daniela Alves ;
Freire Coutinho, Evandro da Silva ;
de Figueiredo, Roberta Carvalho ;
Bisi Molina, Maria del Carmen ;
Mill, Jose Geraldo ;
de Faria, Carolina Perim ;
Nunes, Maria Angelica ;
Moreno, Arlinda B. ;
Giatti, Luana ;
Barreto, Sandhi Maria ;
Viana, Maria Carmen .
JOURNAL OF AFFECTIVE DISORDERS, 2021, 282 :179-186
[33]   Cluster predictors of trajectories of leisure-time physical activity intensity in men and women from ELSA-Brasil [J].
Duque, Andre Luis Messias dos Santos ;
Paula, Daniela Polessa ;
Pitanga, Francisco Jose Gondim ;
Queiroz, Ciro Oliveira ;
Molina, Maria del Carmen Bisi ;
Moreira, Alexandra Dias ;
de Almeida, Maria da Conceicao Chagas ;
de Matos, Sheila Maria Alvim ;
Patrao, Ana Luisa ;
da Fonseca, Maria de Jesus Mendes ;
Griep, Rosane Harter .
CADERNOS DE SAUDE PUBLICA, 2025, 41 (04)
[34]   Glaucoma, but not cataracts, predicts lower verbal fluency performance: 3.8-year follow-up from the ELSA-Brasil study [J].
Vidal, Kallene S. M. ;
Bertola, Laiss ;
Suemoto, Claudia K. ;
Moreno, Arlinda B. ;
Duncan, Bruce ;
Schmidt, Maria Ines ;
Maestri, Marcelo ;
Barreto, Sandhi M. ;
Lotufo, Paulo A. ;
Bensenor, Isabela M. ;
Brunoni, Andre R. .
AGING NEUROPSYCHOLOGY AND COGNITION, 2021, 28 (06) :871-883
[35]   Association Between Triglycerides, High-Density Lipoprotein Cholesterol, and Their Ratio With the Pulse Wave Velocity in Adults From the ELSA-Brasil Study [J].
Lelis, Deborah de Farias ;
Cunha, Roberto S. ;
Santos, Raul D. ;
Sposito, Andrei C. ;
Griep, Rosane Harter ;
Barreto, Sandhi Maria ;
Molina, Maria del Carmen B. ;
Schmidt, Maria Ines ;
Duncan, Bruce B. ;
Bensenor, Isabela ;
Lotufo, Paulo Andrade ;
Mill, Jose Geraldo ;
Baldo, Marcelo Perim .
ANGIOLOGY, 2023, 74 (09) :822-831
[36]   Leisure Time Physical Activity and Cardio-Metabolic Health: Results From the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) [J].
Lin, Xiaochen ;
Alvim, Sheila M. ;
Simoes, Eduardo J. ;
Bensenor, Isabela M. ;
Barreto, Sandhi M. ;
Schmidt, Maria I. ;
Ribeiro, Antonio L. ;
Pitanga, Francisco ;
Almeida, Maria Conceicao C. ;
Liu, Simin ;
Lotufo, Paulo A. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (06)
[37]   Obstructive Sleep Apnea, Sleep Duration, and Associated Mediators With Carotid Intima-Media Thickness The ELSA-Brasil Study [J].
Souza, Silvana P. ;
Santos, Ronaldo B. ;
Santos, Itamar S. ;
Parise, Barbara K. ;
Giatti, Soraya ;
Aielo, Aline N. ;
Cunha, Lorenna F. ;
Silva, Wagner A. ;
Bortolotto, Luiz A. ;
Lorenzi-Filho, Geraldo ;
Lotufo, Paulo A. ;
Bensenor, Isabela M. ;
Drager, Luciano F. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2021, 41 (04) :1549-1557
[38]   Physical inactivity and headache disorders: Cross-sectional analysis in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) [J].
de Oliveira, Arao Belitardo ;
Mercante, Juliane Prieto Peres ;
Peres, Mario Fernando Prieto ;
Molina, Maria Del Carmen B. ;
Lotufo, Paulo A. ;
Bensenor, Isabela M. ;
Goulart, Alessandra C. .
CEPHALALGIA, 2021, 41 (14) :1467-1485
[39]   Adherence to the Dietary Approaches to Stop Hypertension (DASH) and hypertension risk: results of the Longitudinal Study of Adult Health (ELSA-Brasil) [J].
Francisco, S. C. ;
Araujo, L. F. ;
Griep, R. H. ;
Chor, D. ;
Molina, M. D. C. B. ;
Mil, J. G. ;
Bensenor, I. M. ;
Matos, S. M. A. ;
Barreto, S. M. ;
Giatti, L. .
BRITISH JOURNAL OF NUTRITION, 2020, 123 (09) :1068-1077
[40]   Validating the Framingham Hypertension Risk Score: A 4-year follow-up from the Brazilian Longitudinal Study of the Adult Health (ELSA-Brasil) [J].
Syllos, Danielli Haddad ;
Calsavara, Vinicius F. ;
Bensenor, Isabela M. ;
Lotufo, Paulo A. .
JOURNAL OF CLINICAL HYPERTENSION, 2020, 22 (05) :850-856