Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study

被引:6
|
作者
Paula, Daniela Polessa [1 ]
Aguiar, Odaleia Barbosa [2 ]
Marques, Larissa Pruner [3 ]
Bensenor, Isabela [4 ,5 ]
Suemoto, Claudia Kimie [6 ]
Mendes da Fonseca, Maria de Jesus [7 ]
Griep, Rosane Harter [8 ]
机构
[1] Brazilian Inst Geog & Stat, Natl Sch Stat Sci, Rio De Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Inst Nutr, Rio De Janeiro, Brazil
[3] Fundacao Oswaldo Cruz, Natl Sch Publ Hlth, Rio De Janeiro, Brazil
[4] Univ Sao Paulo, Fac Med, Dept Internal Med, Sao Paulo, Brazil
[5] Univ Sao Paulo, Univ Hosp, Sao Paulo, Brazil
[6] Univ Sao Paulo, Div Geriatr, Dept Clin Med, Fac Med, Sao Paulo, Brazil
[7] Natl Sch Publ Hlth ENSP Fiocruz, Dept Epidemiol, Rio De Janeiro, Brazil
[8] Oswaldo Cruz Inst, Hlth & Environm Educ Lab, Rio De Janeiro, Brazil
来源
PLOS ONE | 2022年 / 17卷 / 10期
关键词
MULTILABEL CLASSIFICATION; POPULATION; PATTERNS; MODEL; CARE;
D O I
10.1371/journal.pone.0275619
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Multimorbidity is a worldwide concern related to greater disability, worse quality of life, and mortality. The early prediction is crucial for preventive strategies design and integrative medical practice. However, knowledge about how to predict multimorbidity is limited, possibly due to the complexity involved in predicting multiple chronic diseases. Methods In this study, we present the use of a machine learning approach to build cost-effective multimorbidity prediction models. Based on predictors easily obtainable in clinical practice (sociodemographic, clinical, family disease history and lifestyle), we build and compared the performance of seven multilabel classifiers (multivariate random forest, and classifier chain, binary relevance and binary dependence, with random forest and support vector machine as base classifiers), using a sample of 15105 participants from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). We developed a web application for the building and use of prediction models. Results Classifier chain with random forest as base classifier performed better (accuracy = 0.34, subset accuracy = 0.15, and Hamming Loss = 0.16). For different feature sets, random forest based classifiers outperformed those based on support vector machine. BMI, blood pressure, sex, and age were the features most relevant to multimorbidity prediction. Conclusions Our results support the choice of random forest based classifiers for multimorbidity prediction.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes ELSA-Brasil: accuracy study
    Olivera, Andre Rodrigues
    Roesler, Valter
    Iochpe, Cirano
    Schmidt, Maria Ines
    Vigo, Alvaro
    Barreto, Sandhi Maria
    Duncan, Bruce Bartholow
    SAO PAULO MEDICAL JOURNAL, 2017, 135 (03): : 234 - 246
  • [2] Racial inequalities in multimorbidity: baseline of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
    Garrides Oliveira, Fernanda Esthefane
    Griep, Rosane Harter
    Chor, Dora
    Giatti, Luana
    Machado, Luciana A. C.
    Barreto, Sandhi Maria
    Pereira, Alexandre da Costa
    Mendes da Fonseca, Maria de Jesus
    Bastos, Leonardo Soares
    BMC PUBLIC HEALTH, 2022, 22 (01)
  • [3] Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: an analysis of the ELSA-Brasil study
    Librenza-Garcia, Diego
    Passos, Ives Cavalcante
    Feiten, Jacson Gabriel
    Lotufo, Paulo A.
    Goulart, Alessandra C.
    de Souza Santos, Itamar
    Viana, Maria Carmen
    Bensenor, Isabela M.
    Brunoni, Andre Russowsky
    PSYCHOLOGICAL MEDICINE, 2021, 51 (16) : 2895 - 2903
  • [4] Sex and population differences in the cardiometabolic continuum: a machine learning study using the UK Biobank and ELSA-Brasil cohorts
    Paula, Daniela Polessa
    Camacho, Marina
    Barbosa, Odaleia
    Marques, Larissa
    Griep, Rosane Harter
    da Fonseca, Maria Jesus Mendes
    Barreto, Sandhi
    Lekadir, Karim
    BMC PUBLIC HEALTH, 2024, 24 (01)
  • [5] Association of Sodium with Obstructive Sleep Apnea The ELSA-Brasil Study
    Giatti, Soraya
    Santos, Ronaldo B.
    Aielo, Aline N.
    Silva, Wagner A.
    Parise, Barbara K.
    Souza, Silvana P.
    Pio-Abreu, Andrea
    Bortolotto, Luiz A.
    Lotufo, Paulo A.
    Bensenor, Isabela M.
    Drager, Luciano F.
    ANNALS OF THE AMERICAN THORACIC SOCIETY, 2021, 18 (03) : 502 - 510
  • [6] Factors associated with orthostatic hypotension in adults: the ELSA-Brasil study
    Costa Velten, Ana Paula
    Bensenor, Isabela
    de Souza, Juliana Bottoni
    Mill, Jose Geraldo
    CADERNOS DE SAUDE PUBLICA, 2019, 35 (08):
  • [7] Incidence of thyroid diseases: Results from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
    Bensenor, Isabela M.
    Sgarbi, Jose Augusto
    Janovsky, Carolina Castro Porto Silva
    Pittito, Bianca Almeida
    Haueisen Sander Diniz, Maria de Fatima
    Chagas de Almeida, Maria da Conceicao
    Alvim, Sheila Maria
    Barreto, Sandhi M.
    Giatti, Luana
    Duncan, Bruce B.
    Schmidt, Maria Ines
    Fonseca, Maria de Jesus M.
    Griep, Rosane H.
    Molina, Maria del Carmen B.
    Mill, Jose Geraldo
    Santos, Itamar de Souza
    Goulart, Alessandra C.
    Lotufo, Paulo A.
    ARCHIVES OF ENDOCRINOLOGY METABOLISM, 2021, 65 (04): : 468 - 478
  • [8] Performance of distinct knee osteoarthritis classification criteria in the ELSA-Brasil musculoskeletal study
    Correa Miguel, Rita de Cassia
    Machado, Luciana Andrade
    Costa-Silva, Luciana
    Telles, Rosa Weiss
    Barreto, Sandhi Maria
    CLINICAL RHEUMATOLOGY, 2019, 38 (03) : 793 - 802
  • [9] Frequency of cholecystectomy and associated sociodemographic and clinical risk factors in the ELSA-Brasil study
    Alves, Kamila Rafaela
    Goulart, Alessandra Carvalho
    Ladeira, Roberto Marini
    Souza de Oliveira, Ilka Regina
    Bensenor, Isabela Martins
    SAO PAULO MEDICAL JOURNAL, 2016, 134 (03): : 240 - 250
  • [10] Migraine and subclinical atherosclerosis in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
    Goulart, Alessandra C.
    Santos, Itamar S.
    Bittencourt, Marcio S.
    Lotufo, Paulo A.
    Bensenor, Isabela M.
    CEPHALALGIA, 2016, 36 (09) : 840 - 848