Group-Based Trajectory Modeling of Suppression Ratio After Cardiac Arrest

被引:40
作者
Elmer, Jonathan [1 ,2 ]
Gianakas, John J. [3 ]
Rittenberger, Jon C. [2 ]
Baldwin, Maria E. [4 ]
Faro, John [2 ]
Plummer, Cheryl [5 ]
Shutter, Lori A. [1 ,6 ,7 ]
Wassel, Christina L. [8 ]
Callaway, Clifton W. [2 ]
Fabio, Anthony [3 ]
机构
[1] Univ Pittsburgh, Dept Crit Care Med, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Dept Emergency Med, Iroquois Bldg,Suite 400A,3600 Forbes Ave, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Dept Epidemiol, Epidemiol Data Ctr, Pittsburgh, PA 15261 USA
[4] VA Pittsburgh Healthcare Syst, Dept Neurol, Pittsburgh, PA USA
[5] Univ Pittsburgh, Med Ctr, Div Clin Neurophysiol, Pittsburgh, PA USA
[6] Univ Pittsburgh, Dept Neurol, Pittsburgh, PA 15260 USA
[7] Univ Pittsburgh, Dept Neurosurg, Pittsburgh, PA USA
[8] Univ Vermont, Dept Pathol & Lab Med, Coll Med, Burlington, VT 05405 USA
关键词
Cardiac arrest; Anoxic brain injury; Quantitative electroencephalography; Suppression ratio; Prognosis; THERAPEUTIC HYPOTHERMIA; COMATOSE SURVIVORS; BURST-SUPPRESSION; RESUSCITATION COUNCIL; EPILEPTIFORM ACTIVITY; PROSPECTIVE COHORT; BISPECTRAL INDEX; PROGNOSTIC VALUE; CONTINUOUS EEG; ELECTROENCEPHALOGRAM;
D O I
10.1007/s12028-016-0263-9
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Existing studies of quantitative electroencephalography (qEEG) as a prognostic tool after cardiac arrest (CA) use methods that ignore the longitudinal pattern of qEEG data, resulting in significant information loss and precluding analysis of clinically important temporal trends. We tested the utility of group-based trajectory modeling (GBTM) for qEEG classification, focusing on the specific example of suppression ratio (SR). We included comatose CA patients hospitalized from April 2010 to October 2014, excluding CA from trauma or neurological catastrophe. We used Persyst(A (R))v12 to generate SR trends and used semi-quantitative methods to choose appropriate sampling and averaging strategies. We used GBTM to partition SR data into different trajectories and regression associate trajectories with outcome. We derived a multivariate logistic model using clinical variables without qEEG to predict survival, then added trajectories and/or non-longitudinal SR estimates, and assessed changes in model performance. Overall, 289 CA patients had ae<yen>36 h of EEG yielding 10,404 h of data (mean age 57 years, 81 % arrested out-of-hospital, 33 % shockable rhythms, 31 % overall survival, 17 % discharged to home or acute rehabilitation). We identified 4 distinct SR trajectories associated with survival (62, 26, 12, and 0 %, P < 0.0001 across groups) and CPC (35, 10, 4, and 0 %, P < 0.0001 across groups). Adding trajectories significantly improved model performance compared to adding non-longitudinal data. Longitudinal analysis of continuous qEEG data using GBTM provides more predictive information than analysis of qEEG at single time-points after CA.
引用
收藏
页码:415 / 423
页数:9
相关论文
共 35 条
  • [1] Prognosis of coma after therapeutic hypothermia: A prospective cohort study
    Bouwes, Aline
    Binnekade, Jan M.
    Kuiper, Michael A.
    Bosch, Frank H.
    Zandstra, Durk F.
    Toornvliet, Arnoud C.
    Biemond, Hazra S.
    Kors, Bas M.
    Koelman, Johannes H. T. M.
    Verbeek, Marcel M.
    Weinstein, Henry C.
    Hijdra, Albert
    Horn, Janneke
    [J]. ANNALS OF NEUROLOGY, 2012, 71 (02) : 206 - 212
  • [2] Brain Connectivity Dissociates Responsiveness from Drug Exposure during Propofol-Induced Transitions of Consciousness
    Chennu, Srivas
    O'Connor, Stuart
    Adapa, Ram
    Menon, David K.
    Bekinschtein, Tristan A.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (01)
  • [3] Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: A prospective cohort study
    Cloostermans, Marleen C.
    van Meulen, Fokke B.
    Eertman, Carin J.
    Hom, Harold W.
    van Putten, Michel J. A. M.
    [J]. CRITICAL CARE MEDICINE, 2012, 40 (10) : 2867 - 2875
  • [4] Validation of the Pittsburgh Cardiac Arrest Category illness severity score
    Coppler, Patrick J.
    Elmer, Jonathan
    Calderon, Luis
    Sabedra, Alexa
    Doshi, Ankur A.
    Callaway, Clifton W.
    Rittenberger, Jon C.
    Dezfulian, Cameron
    [J]. RESUSCITATION, 2015, 89 : 86 - 92
  • [5] Continuous EEG in therapeutic hypothermia after cardiac arrest Prognostic and clinical value
    Crepeau, Amy Z.
    Rabinstein, Alejandro A.
    Fugate, Jennifer E.
    Mandrekar, Jay
    Wijdicks, Eelco F.
    White, Roger D.
    Britton, Jeffrey W.
    [J]. NEUROLOGY, 2013, 80 (04) : 339 - 344
  • [6] A structured approach to neurologic prognostication in clinical cardiac arrest trials
    Cronberg, Tobias
    Horn, Janneke
    Kuiper, Michael A.
    Friberg, Hans
    Nielsen, Niklas
    [J]. SCANDINAVIAN JOURNAL OF TRAUMA RESUSCITATION & EMERGENCY MEDICINE, 2013, 21
  • [7] Neurological prognostication after cardiac arrest-Recommendations from the Swedish Resuscitation Council
    Cronberg, Tobias
    Brizzi, Marco
    Liedholm, Lars Johan
    Rosen, Ingmar
    Rubertsson, Sten
    Rylander, Christian
    Friberg, Hans
    [J]. RESUSCITATION, 2013, 84 (07) : 867 - 872
  • [8] Quantitative EEG for the detection of brain ischemia
    Foreman, Brandon
    Claassen, Jan
    [J]. CRITICAL CARE, 2012, 16 (02):
  • [9] Clinical review: Continuous and simplified electroencephalography to monitor brain recovery after cardiac arrest
    Friberg, Hans
    Westhall, Erik
    Rosen, Ingmar
    Rundgren, Malin
    Nielsen, Niklas
    Cronberg, Tobias
    [J]. CRITICAL CARE, 2013, 17 (04)
  • [10] Documentation discrepancies of time-dependent critical events in out of hospital cardiac arrest
    Frisch, Adam
    Reynolds, Joshua C.
    Condle, Joseph
    Gruen, Danielle
    Callaway, Clifton W.
    [J]. RESUSCITATION, 2014, 85 (08) : 1111 - 1114