Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment

被引:49
作者
Tamura, Masato [1 ]
Yanagawa, Fumiki [1 ]
Sugiura, Shinji [1 ]
Takagi, Toshiyuki [1 ]
Sumaru, Kimio [1 ]
Kanamori, Toshiyuki [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Dept Life Sci & Biotechnol, Tsukuba, Ibaraki 6058565, Japan
关键词
PHOTOINDUCED ENHANCEMENT; CULTURE; CHEMISTRY; SEPARATION; LIGHT;
D O I
10.1038/srep15060
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper describes the generation of "click-crosslinkable" and "photodegaradable" gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiation; the minimum resolution of micropatterning was 10-mu m widths for line patterns and 20-mu m diameters for circle patterns. Cells were successfully encapsulated in the hydrogels without any loss of viability across a wide concentration range of crosslinker. In contrast, an activated-ester-type photocleavable crosslinker, which we previously used to prepare photodegradable gelatin hydrogels, induced a decrease in cell viability at crosslinker concentrations greater than 1.8 mM. We also observed morphology alteration and better growth of cancer cells in the click-crosslinked photodegradable gelatin hydrogels that included matrigel than in the absence of matrigel. We also demonstrated micropatterning of the hydrogels encapsulating cells and optical cell separation. Both of the cells that remained in the non-irradiated area and the cells collected from the irradiated area maintained their viability.
引用
收藏
页数:12
相关论文
共 33 条
[1]   Directed 3D cell alignment and elongation in microengineered hydrogels [J].
Aubin, Hug ;
Nichol, Jason W. ;
Hutson, Che B. ;
Bae, Hojae ;
Sieminski, Alisha L. ;
Cropek, Donald M. ;
Akhyari, Payam ;
Khademhosseini, Ali .
BIOMATERIALS, 2010, 31 (27) :6941-6951
[2]   Bioorthogonal Click Chemistry: An Indispensable Tool to Create Multifaceted Cell Culture Scaffolds [J].
Azagarsamy, Malar A. ;
Anseth, Kristi S. .
ACS MACRO LETTERS, 2013, 2 (01) :5-9
[3]   Building Biomedical Materials using Photochemical Bond Cleavage [J].
Bao, Chunyan ;
Zhu, Linyong ;
Lin, Qiuning ;
Tian, He .
ADVANCED MATERIALS, 2015, 27 (10) :1647-1662
[4]   Emulsion Templated Scaffolds that Include Gelatin and Glycosaminoglycans [J].
Barbetta, Andrea ;
Massimi, Mara ;
Di Rosario, Biancalucia ;
Nardecchia, Stefania ;
De Colli, Marianna ;
Devirgiliis, Laura Conti ;
Dentini, Mariella .
BIOMACROMOLECULES, 2008, 9 (10) :2844-2856
[5]  
Benton JA, 2009, TISSUE ENG PT A, V15, P3221, DOI [10.1089/ten.tea.2008.0545, 10.1089/ten.TEA.2008.0545]
[6]   Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels [J].
Benton, Julie A. ;
Fairbanks, Benjamin D. ;
Anseth, Kristi S. .
BIOMATERIALS, 2009, 30 (34) :6593-6603
[7]   Novel hydrogels via click chemistry: Synthesis and potential biomedical applications [J].
Crescenzi, Vittorio ;
Cornelio, Lisa ;
Di Meo, Chiara ;
Nardecchia, Stefania ;
Lamanna, Raffaele .
BIOMACROMOLECULES, 2007, 8 (06) :1844-1850
[8]   Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition [J].
Debets, Marjoke F. ;
van Berkel, Sander S. ;
Schoffelen, Sanne ;
Rutjes, Floris P. J. T. ;
van Hest, Jan C. M. ;
van Delft, Floris L. .
CHEMICAL COMMUNICATIONS, 2010, 46 (01) :97-99
[9]  
DeForest CA, 2011, NAT CHEM, V3, P925, DOI [10.1038/NCHEM.1174, 10.1038/nchem.1174]
[10]   HEPATOCYTE FUNCTION AND EXTRACELLULAR-MATRIX GEOMETRY - LONG-TERM CULTURE IN A SANDWICH CONFIGURATION [J].
DUNN, JCY ;
YARMUSH, ML ;
KOEBE, HG ;
TOMPKINS, RG .
FASEB JOURNAL, 1989, 3 (02) :174-177