On a uniqueness theorem of Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter

被引:4
作者
Wang, Yu Ping [1 ]
Lien, Ko Ya [2 ]
Shieh, Chung Tsun [2 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing, Jiangsu, Peoples R China
[2] Tamkang Univ, Dept Math, New Taipei, Taiwan
关键词
Inverse spectral problem; Inverse nodal problem; Spectral parameter; Potential; Weyl m-function; INVERSE NODAL PROBLEMS; PARTIAL INFORMATION; EIGENPARAMETER; OPERATORS;
D O I
10.1186/s13661-018-0948-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inverse nodal problems for Sturm-Liouville equations associated with boundary conditions polynomially dependent on the spectral parameter are studied. The authors show that a twin-dense subset W-B([a, b]) can uniquely determine the operator up to a constant translation of eigenparameter and potential, where [a, b] is an arbitrary interval which contains the middle point of the domain of the operator and B is a subset of N which satisfies some condition (see Theorem 4.2).
引用
收藏
页数:11
相关论文
共 25 条
[1]   STURM-LIOUVILLE PROBLEMS WITH EIGENPARAMETER DEPENDENT BOUNDARY-CONDITIONS [J].
BINDING, PA ;
BROWNE, PJ ;
SEDDIGHI, K .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1994, 37 :57-72
[2]   Inverse nodal problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions [J].
Browne, PJ ;
Sleeman, BD .
INVERSE PROBLEMS, 1996, 12 (04) :377-381
[3]   Inverse nodal problem for differential pencils [J].
Buterin, S. A. ;
Shieh, Chung Tsun .
APPLIED MATHEMATICS LETTERS, 2009, 22 (08) :1240-1247
[4]   RECONSTRUCTING POTENTIALS FROM ZEROS OF ONE EIGENFUNCTION [J].
Chen, Xinfu ;
Cheng, Y. H. ;
Law, C. K. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (09) :4831-4851
[5]   Remarks on a new inverse nodal problem [J].
Cheng, YH ;
Law, CK ;
Tsay, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 248 (01) :145-155
[6]   A uniqueness theorem for the boundary value problems with non-linear dependence on the spectral parameter in the boundary conditions [J].
Chernozhukova, A. ;
Freiling, G. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (06) :777-785
[7]  
EVERITT WN, 1972, J LOND MATH SOC, V4, P443
[8]   Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter [J].
Freiling, G. ;
Yurko, V. A. .
INVERSE PROBLEMS, 2010, 26 (05)
[9]  
Freiling G., 2001, INVERSE STURM LIOUVI
[10]   Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum [J].
Gesztesy, F ;
Simon, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) :2765-2787