STABILITY FOR AN n-DIMENSIONAL FUNCTIONAL EQUATION OF QUADRATIC-ADDITIVE TYPE WITH THE FIXED POINT APPROACH

被引:0
作者
Chang, Ick-Soon [1 ]
Lee, Yang-Hi [2 ]
机构
[1] Mokwon Univ, Dept Math, Taejon 302729, South Korea
[2] Gongju Natl Univ Educ, Dept Math Educ, Gongju 314711, South Korea
基金
新加坡国家研究基金会;
关键词
stability; fixed point method; n-dimensional quadratic-additive type functional equation; ULAM-RASSIAS STABILITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we investigate the stability of a functional equation Sigma(1 <=tau,j <= n,i not equal j) [f(x(i) + x(j)) + f (x(i) - x(j))] - (n - 1) Sigma(f)(j=1)(2x(j)) = 0 by using the fixed point methd in the sense of Cadariu and Radu.
引用
收藏
页码:1096 / 1103
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 1968, COLLECTION MATH PROB
[2]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[3]  
C adariu L., 2004, Grazer Mathematische Berichte, V346, P43
[4]  
Cadariu L., 2003, An. Univ. Timisoara, Ser. Mat. Inform., V41, P25
[5]  
Cdariu L., 2003, J INEQUAL PURE APPL, V4, P4
[6]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[7]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[8]  
Kim GH, 2001, MATH INEQUAL APPL, V4, P257
[9]   On the stability problem for a mixed type of quartic and quadratic functional equation [J].
Kim, Hark-Mahn .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :358-372
[10]  
Lee H., 2000, J KOREAN MATH SOC, V37, P111