Mining Hubble Space Telescope Images

被引:0
作者
Hocking, Alex [1 ]
Sun, Yi [1 ]
Geach, James E. [2 ]
Davey, Neil [1 ]
机构
[1] Univ Hertfordshire, Biocomputat Res Grp, Hatfield, Herts, England
[2] Univ Hertfordshire, Ctr Astrophys Res, Hatfield, Herts, England
来源
2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2017年
关键词
SELF-ORGANIZING MAPS; GALAXY MORPHOLOGY; PRECISION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Astrophysicists rely on crowd sourced initiatives to classify galaxies in large surveys. The next generation of telescopes will lead to a revolutionary increase in the amount of unlabelled data available to astrophysicists making crowd sourcing infeasible. To cope with this significant increase in data astrophysicists will need unsupervised techniques. In this paper we show that a model using unsupervised learning can automatically categorise galaxies in Hubble Space Telescope survey images. We discover the optimum parameter combination using a grid search like approach. We also present a detailed analysis of the effect of varying parameters. We analyse Hubble Space Telescope images and evaluate the model's performance for identifying major categories of galaxies and for identifying a type of lensed galaxy. We find that the pixel intensity power spectrum is the most effective at identifying elliptical, spiral and background galaxies whereas the rotationally invariant feature transform is more effective at detecting a type of lensed galaxy that occurs as a result of strong lensing.
引用
收藏
页码:4179 / 4186
页数:8
相关论文
共 31 条
[1]   Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces [J].
Alcantarilla, Pablo F. ;
Nuevo, Jesus ;
Bartoli, Adrien .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
[2]  
[Anonymous], INT C COMP VIS
[3]  
[Anonymous], 2009, P 26 ANN INT C MACH
[4]  
[Anonymous], 2004, ECCV WORKSHOPS
[5]   ASPECT: A spectra clustering tool for exploration of large spectral surveys [J].
Au, A. In Der ;
Meusinger, H. ;
Schalldach, P. F. ;
Newholm, M. .
ASTRONOMY & ASTROPHYSICS, 2012, 547
[6]   Galaxy Zoo: reproducing galaxy morphologies via machine learning☆ [J].
Banerji, Manda ;
Lahav, Ofer ;
Lintott, Chris J. ;
Abdalla, Filipe B. ;
Schawinski, Kevin ;
Bamford, Steven P. ;
Andreescu, Dan ;
Murray, Phil ;
Raddick, M. Jordan ;
Slosar, Anze ;
Szalay, Alex ;
Thomas, Daniel ;
Vandenberg, Jan .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 406 (01) :342-353
[7]   A morphological classification scheme for ULIRGs - Evidencde for multiple mergers [J].
Borne, KD ;
Bushouse, H ;
Colina, L ;
Lucas, RA ;
Baker, A ;
Clements, D ;
Lawrence, A ;
Oliver, S ;
Rowan-Robinson, M .
ASTROPHYSICS AND SPACE SCIENCE, 1999, 266 (1-2) :137-142
[8]   The relationship between stellar light distributions of galaxies and their formation histories [J].
Conselice, CJ .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 147 (01) :1-28
[9]   CLaSPS: A NEW METHODOLOGY FOR KNOWLEDGE EXTRACTION FROM COMPLEX ASTRONOMICAL DATA SETS [J].
D'Abrusco, R. ;
Fabbiano, G. ;
Djorgovski, G. ;
Donalek, C. ;
Laurino, O. ;
Longo, G. .
ASTROPHYSICAL JOURNAL, 2012, 755 (02)
[10]   Rotation-invariant convolutional neural networks for galaxy morphology prediction [J].
Dieleman, Sander ;
Willett, Kyle W. ;
Dambre, Joni .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (02) :1441-1459