Memetic algorithms outperform evolutionary algorithms in multimodal optimisation

被引:33
作者
Phan Trung Hai Nguyen [1 ]
Sudholt, Dirk [2 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
[2] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
关键词
Search heuristics; Hybridisation; Evolutionary algorithms; Black-box optimisation; Memetic algorithms; Time complexity; LOCAL SEARCH ALGORITHM; ROYAL ROAD FUNCTIONS; CROSSOVER; COMPLEXITY; OPERATORS; MUTATION;
D O I
10.1016/j.artint.2020.103345
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Memetic algorithms integrate local search into an evolutionary algorithm to combine the advantages of rapid exploitation and global optimisation. We provide a rigorous runtime analysis of memetic algorithms on the Hurdle problem, a landscape class of tunable difficulty with a "big valley structure", a characteristic feature of many hard combinatorial optimisation problems. A parameter called hurdle width describes the length of fitness valleys that need to be overcome. We show that the expected runtime of plain evolutionary algorithms like the (1+1) EA increases steeply with the hurdle width, yielding superpolynomial times to find the optimum, whereas a simple memetic algorithm, (1+1) MA, only needs polynomial expected time. Surprisingly, while increasing the hurdle width makes the problem harder for evolutionary algorithms, it becomes easier for memetic algorithms. We further give the first rigorous proof that crossover can decrease the expected runtime in memetic algorithms. A (2+1) MA using mutation, crossover and local search outperforms any other combination of these operators. Our results demonstrate the power of memetic algorithms for problems with big valley structures and the benefits of hybridising multiple search operators. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 67 条
[1]  
Alanazi F, 2014, 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P2515, DOI 10.1109/CEC.2014.6900602
[2]  
[Anonymous], 2018, P GENETIC EVOLUTIONA
[3]   Memetic search for the quadratic assignment problem [J].
Benlic, Una ;
Hao, Jin-Kao .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (01) :584-595
[4]  
Burjorjee K.M., 2015, P 2015 ACM C FDN GEN, P163
[5]   A Multi-Facet Survey on Memetic Computation [J].
Chen, Xianshun ;
Ong, Yew-Soon ;
Lim, Meng-Hiot ;
Tan, Kay Chen .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (05) :591-607
[6]  
Cormen Thomas H., 2009, Introduction to Algorithms, V3rd
[7]   Standard Steady State Genetic Algorithms Can Hillclimb Faster Than Mutation-Only Evolutionary Algorithms [J].
Corus, Dogan ;
Oliveto, Pietro S. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (05) :720-732
[8]   Escaping Local Optima Using Crossover With Emergent Diversity [J].
Dang, Duc-Cuong ;
Friedrich, Tobias ;
Koetzing, Timo ;
Krejca, Martin S. ;
Lehre, Per Kristian ;
Oliveto, Pietro S. ;
Sudholt, Dirk ;
Sutton, Andrew M. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (03) :484-497
[9]  
Dinneen MJ, 2013, 2013 IEEE WORKSHOP ON MEMETIC COMPUTING (MC), P24, DOI 10.1109/MC.2013.6608203
[10]   On the Runtime Analysis of Selection Hyper-Heuristics with Adaptive Learning Periods [J].
Doerr, Benjamin ;
Lissovoi, Andrei ;
Oliveto, Pietro S. ;
Warwicker, John Alasdair .
GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, :1015-1022