1D Schrodinger Operators with Short Range Interactions: Two-Scale Regularization of Distributional Potentials

被引:28
作者
Golovaty, Yuriy [1 ]
机构
[1] Ivan Franko Natl Univ Lviv, Dept Differential Equat, 1 Univ Str, UA-79000 Lvov, Ukraine
关键词
1D Schrodinger operator; resonance; short range interaction; point interaction; delta-potential; delta '-potential; distributional potential; solvable model; norm resolvent convergence; RELATIVISTIC QUANTUM-MECHANICS; COUPLING-CONSTANT THRESHOLDS; STURM-LIOUVILLE OPERATORS; RESOLVENT CONVERGENCE; SINGULAR POTENTIALS; BOUNDARY-CONDITIONS; POINT INTERACTIONS; SCATTERING; LINE; ASYMPTOTICS;
D O I
10.1007/s00020-012-2027-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For real L-infinity(R)-functions Phi and Psi of compact support, we prove the norm resolvent convergence, as epsilon and nu tend to 0, of a family S-epsilon nu of one-dimensional Schrodinger operators on the line of the form S-epsilon nu = -d(2)/dx(2) + alpha/epsilon(2) Phi (x/epsilon) + beta/nu Psi (x/nu), provided the ratio nu/epsilon has a finite or infinite limit. The limit operator S-0 depends on the shape of Phi and Psi as well as on the limit of ratio nu/epsilon. If the potential alpha Phi possesses a zero-energy resonance, then S-0 describes a non trivial point interaction at the origin. Otherwise S-0 is the direct sum of the Dirichlet half-line Schrodinger operators.
引用
收藏
页码:341 / 362
页数:22
相关论文
共 41 条
  • [1] Small-energy asymptotics for the Schrodinger equation on the line
    Aktosun, T
    Klaus, M
    [J]. INVERSE PROBLEMS, 2001, 17 (04) : 619 - 632
  • [2] Albeverio S., 1983, Annales de l'Institut Henri Poincare, Section A (Physique Theorique), V38, P263
  • [3] ALBEVERIO S, 1981, J OPERAT THEOR, V6, P313
  • [4] Albeverio S., 2005, Solvable Models in Quantum Mechanics, V2
  • [5] Albeverio S., 2000, Singular Perturbations of Differential Operators
  • [6] Coupling in the singular limit of thin quantum waveguides
    Albeverio, Sergio
    Cacciapuoti, Claudio
    Finco, Domenico
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (03)
  • [7] [Anonymous], ARXIV11122545MATHFA
  • [8] [Anonymous], ANN I H POINCARE
  • [9] BOLLE D, 1985, J OPERAT THEOR, V13, P3
  • [10] SCATTERING-THEORY FOR ONE-DIMENSIONAL SYSTEMS WITH INTEGRAL-DX V(X) = 0
    BOLLE, D
    GESZTESY, F
    KLAUS, M
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 122 (02) : 496 - 518