A GENERALIZED QUANTUM RELATIVE ENTROPY

被引:2
作者
Andrade, Luiza H. F. [1 ]
Vigelis, Rui F. [2 ,3 ]
Cavalcante, Charles C. [2 ,3 ]
机构
[1] Univ Fed Rural Semi Arido, Dept Nat Sci Math & Stat, Mossoro, RN, Brazil
[2] Univ Fed Ceara, Comp Engn, Campus Sobral, Sobral, Ceara, Brazil
[3] Univ Fed Ceara, Dept Teleinformat Engn, Fortaleza, Ceara, Brazil
关键词
Quantum relative entropy; quantum information theory; deformed exponential function; phi-families of probablity distributions; UNIQUENESS; FAMILIES;
D O I
10.3934/amc.2020063
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a generalization of the quantum relative entropy by considering the geodesic on a manifold formed by all the invertible density matrices P. This geodesic is defined from a deformed exponential function phi which allows to work with a wider class of families of probability distributions. Such choice allows important flexibility in the statistical model. We show and discuss some properties of this proposed generalized quantum relative entropy.
引用
收藏
页码:413 / 422
页数:10
相关论文
共 22 条
[1]   Nonadditive generalization of the quantum Kullback-Leibler divergence for measuring the degree of purification [J].
Abe, S .
PHYSICAL REVIEW A, 2003, 68 (03) :3
[2]   Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries [J].
Amari, Shun-ichi ;
Ohara, Atsumi ;
Matsuzoe, Hiroshi .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (18) :4308-4319
[3]   Information gain within nonextensive thermostatistics [J].
Borland, L ;
Plastino, AR ;
Tsallis, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) :6490-6501
[4]   Exponential statistical manifold [J].
Cena, Alberto ;
Pistone, Giovanni .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2007, 59 (01) :27-56
[5]   Geometry Induced by a Generalization of Renyi Divergence [J].
de Souza, David C. ;
Vigelis, Rui F. ;
Cavalcante, Charles C. .
ENTROPY, 2016, 18 (11)
[6]   On uniqueness theorems for Tsallis entropy and Tsallis relative entropy [J].
Furuichi, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) :3638-3645
[7]   Fundamental properties of Tsallis relative entropy [J].
Furuichi, S ;
Yanagi, K ;
Kuriyama, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (12) :4868-4877
[8]   On the uniqueness of the Chentsov metric in quantum information geometry [J].
Grasselli, MR ;
Streater, RF .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2001, 4 (02) :173-182
[9]  
Hoffman Kenneth, 1971, Linear Algebra
[10]   Statistical mechanics in the context of special relativity [J].
Kaniadakis, G .
PHYSICAL REVIEW E, 2002, 66 (05) :17-056125