Adaptive Kalman Filtering for Local Mean Power Estimation in Mobile Communications

被引:0
作者
Kurt, T. [1 ]
Lerbour, R. [1 ]
Le Helloco, Y. [1 ]
Breton, B. [1 ]
机构
[1] Ericsson TEMS, Ottawa, ON K2K 3G7, Canada
来源
2006 IEEE 64TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-6 | 2006年
关键词
Local mean power estimation; windowing; Kalman filter; parameter estimation; power control; signal strength estimation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we investigate the local mean signal estimation problem for wireless communications. Recently, it has been shown that the Kalman filtering approach results in better power estimates when compared to the traditional window based approaches for mean power estimation. In our work, we extend the Kalman filtering approach to adaptive Kalman filtering by combining the Kalman filtering with the window based filtering. Hence, Kalman filtering became available for practical use. The filter has been tested with field measurements and shown to outperform window based techniques.
引用
收藏
页码:1415 / 1418
页数:4
相关论文
共 50 条
  • [41] Battery state of the charge estimation using Kalman filtering
    Mastali, M.
    Vazquez-Arenas, J.
    Fraser, R.
    Fowler, M.
    Afshar, S.
    Stevens, M.
    JOURNAL OF POWER SOURCES, 2013, 239 : 294 - 307
  • [42] Based on the Channel Estimation Kalman Filtering Performance Analysis
    Wang, Caiwu
    Chang, Jiang
    Tian, Shiwei
    PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 598 - 601
  • [43] State estimation based on Kalman filtering techniques in navigation
    Tamas, L.
    Lazea, Gh.
    Robotin, R.
    Marcu, C.
    Herle, S.
    Szekely, Z.
    2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR 2008), THETA 16TH EDITION, VOL II, PROCEEDINGS, 2008, : 147 - +
  • [44] The Kalman Filtering for a class of Local Strongly Coupled Systems
    Cai, Yunze
    Wang, Hua O.
    Xu, Xiaoming
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1962 - +
  • [45] On the equivalence of Kalman filtering and least-squares estimation
    Mysen, E.
    JOURNAL OF GEODESY, 2017, 91 (01) : 41 - 52
  • [46] Dynamic Synchrophasor Estimation using Smoothed Kalman Filtering
    Fontanelli, Daniele
    Macii, David
    Petri, Dario
    2016 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, 2016, : 768 - 773
  • [47] Naive Kalman Filtering for Estimation of Spatial Object Orientation
    Bieda, Robert
    Grygiel, Rafal
    Galuszka, Adam
    2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 955 - 960
  • [48] Power System Harmonics Estimation using R Adaptive Variational Bayesian Kalman Filter
    Pradhan, Yuglina
    Dey, Aritro
    2021 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE (IPRECON), 2021,
  • [49] Improved Kalman Filtering Algorithms for Mobile Tracking in NLOS Scenarios
    KegenYu
    Dutkiewicz, Eryk
    2012 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2012,
  • [50] A Hybrid Computing Adaptive Filtering Methods for Parameter Estimation of Nonstationary Power Signals
    Biswal, B. N.
    Patra, P. K.
    Panigrahi, B. K.
    Dash, P. K.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2010, 10 (04): : 145 - 153